
NASA Contractor Report 189594

MOM3D Method of Moments Code

Theory Manual

John E Shaeffer

DENMAR, Inc.

Marietta, Georgia

LOCKHEED ADVANCED DEVELOPMENT COMPANY

Sunlaad, California

Contract NAS!-18603

March 1992

Nalka'_ Aomaal,Cd_ ancl
Snaoo __

Remmr¢_ Omttmr
Hampton,V'uginia23665-5225

Review for general release March 31. 1994

(NASA-CR-18959_) MOM3D METHOD OF

MOMENTS CODE THEGRY MANUAL Final

Report .(DENMAR) 165 p

N94,-32897

Unclas

G3/32 0011950



NASA Contractor Report 189594

MOM3D Method of Moments Code

Theory Manual

John E Shaeffer

DENMAR, Inc.

Marietta, Georgia

LOCKHEED ADVANCED DEVELOPMENT COMPANY

Sunland, California

Contract NAS1-18603
March 1992

RFLqA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

Review for general release March 31. 1994



_" r _":..........i........._'"',

:_:_:_!_:_;!:_::_:_:i:i:L_:::!_:i_.:_:_.:i:_::_:_:_:_:_:i;i_i:i:i;T:!:i:_;:i::_:_:_;_i:i:_:_:!_:_:!:_:i::_:_:i:i;!i:_!:_::i̧ / :" ::T_:: ! ;_:!:_:_:_:_:_:_:_:_:_:i:!:_:_:_:_:i:_:_:!;_:i:_:i:_:!:Ti:i:i:!:i:i:i:!:i:!:!:_:_;!:i:_:i:!:i:i:_:i:_:_:_:_:_:_:_:_:_:i:_:_:i:i:_:E:i:!:_

_L_U_;¢_L_ _H_L_--_ - :::::::::::_:_::::f:U::;:_:;L:::::::Sy:*._H :y-;:LLL:_::A::::::::_:::::::::::::_::.'<:::::::::::;,_ ":::::::::T::'::::::::_:;:::::::::::::::::::::::

_ii__ __i_!_i i_i_ii_i_i_i_i__iii!iiiiii!iilii_i_ ;'_h_di!i_ _?_ _::.H : :_::_'i_a _:'_: : :" : ":::" :::" _m/_n tsiii!iiiiCOd::::::::_ :--::: ::_H'::::::::::::::::_:::::::::u;::::::;:::::::::::::eiii!iiiiiii!iiiiiiiiiiiiiliiii!i!iiiiiiiiiiiiiiiii

/ / %/ '..- _ .../ . 3=_ -.,. -

..'. ,,,,,_..............,,',,,',,:,•.... ...: - _: ..... .... ,:,,,_.......... ,_..... ._.

:. ",,,. _. , , '...".._._- ..::** : - ,,,
• '*",_ ,,,*,,,.***l'_*'" _,1_.. .. .. : :._ .. ...... II,L,,,._,,,,i,,,t,,,,@,,,*o ._
- : ._,, .... ..:: • : _ ;:-' .. *,_ / ."
: "* ._.'". ." Z . _* ". .".._ ** :

-" '..."" :.' ',,,", ." .-" i *" '. ,',,,,': "" " ':

..A .........'.. \ %_i.,.-.....i..'I'I,iEORY MANUAL
"i::":'" ", "',*,,,:"* ..........:............"".,,,,'"' ." "':

March 1992

...-_;- .,......... •........

.... .._::
..:-

•" ....................:....................: :
;.:L.....•....-'

...............T............. .. ....._"-."_i':

•: ,,*_.,,. ":'... "........-'.

/ - ...... - _ .. ....... _. -
- :".. • _,..."•'•T...... '-" ¢ .." '.. "

_!_! :" / -',P,._•#;,_-- ,,: _ ! -
,- =.............._.............._.._..........._............_o"............_}........._..i..............k..............i ...

. . . -., - io.-.•..:•-i • ..... ..,::•. ,.:.. _: ":_
_ - ._..,,_...-.-_.-:._._i,,_.,' .- .

.... • 11 , .... , I I ....

. . .. .• .. ,,_.- .., _ • . / -
- : ".-' _,_. ....... _..••.-.-.;' _ "....."

-... ...... •.. ._,,,. .,,,;. .." .... : ..,-
/_L- ,_,_u,_,,Shaeffer -_.... ..._.. •;: ........ ,

•. :o..

3278 Hunterd_.n-Way "..."
• .'4 "..

•. '..,.

M etta, Georgia 3006Yiiii--..................'""i?;i!-

(404) 952-3678



P_FA_

This report summarizes the theory for a three dimensional method of moments triangular

patch code for RCS and antenna analysis. Diagnostic capability incudes scattering image

analysis, current display, and near field computation. The algorithm was designed to be cpu

time and memory efficient. Individual parts of this work have been documented previously

as separate tasks. MOM3D now contains most of the original goals, thus it is time to bring

together the appropriate theory in one report.

The FORTRAN code itself is described elsewhere. Computer codes are never static. They

are continually changed by interested users. User manuals become dynamic documents

compared to theory.

This work is in support of the Advanced Aircraft Branch of the NASA Langley Research

Center. Mr. Noel Talcott is the NASA point of contact.

This report prepared by John Shaeffer, Denmar, Inc., Atlanta Office, 3278 Hunterdon Way,

Marietta, Georgia 30067, (404) 952-3678.
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SECTIONI

OVERVIEWand SUMMARY

What Is MOM3D ? : MOM3D is a FORTRAN algorithm that solves Maxwell's equations

as expressed via the electric field integral equation for the electromagnetic response of open

or closed three dimensional surfaces modeled with triangle patches. Two joined triangles

(couples) form the vector current unknowns for the surface. Boundary conditions are for

perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental

electromagnetic interaction of the body with itself. A variety of electromagnetic analysis

options are poss_le once the impedance matrix is computed.

What Does MOM3D Compute ? : The following analysis options are available once the

impedance matrix is computed for each frequency and solved:

Backscatter radar cross*section (RCS) for two orthogonal

linear polarizations as a function of user specified azimuth and

/ or elevation angles;

Bistatic radar cross section for two orthogonal linear

polarization for user specified excitation angle and polarization.

Bistatic RCS is computed over user specified azimuth and / or

elevation angles;

Antenna pattern prediction for user specified body voltage

excitation ports. Isotropic gain is computed for user specified

polarization and azimuth and / or elevation angles along with

antenna input impedance;
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RCS image prediction shows RCS scattering center locations

(mechanisms) for user specified plane wave excitation of the

body (polarization and azimuth and elevation). Either down

range or 2D range / cross range images may be specified for

user specified spatial extent and resolution to _2;

Surface currents excited on the body as induced by specified

plane wave excitation (polarization and azimuth and elevation);

Near field computation for the electric field on or near the

body as produced by user specified incident plane wave

(polarization and azimuth and elevation).

MOM3D allows users the ability not only to compute RCS or antenna patterns, but also has

diagnostic capability to aide in understanding electromagnetic responses.

Why Is MOM3D Different ? : MOM3D is different from other surface patch codes based

on the same basis expansion functions in the following respects-

A wider choice of analysis options: Backscatter RCS, Bistatic

RCS, and Antenna gain;

Diagnostic capability for: 1) Image analysis in one or two

dimensions, 2) Surface current display, and 3) Near surface

electric fields;

Efficient formulation to reduce required computer resources.

This means that a given set of computation resources may be

applied to electrically larger bodies. Explicitly: 1) A symmetric

matrix formulation is used to reduce the matrix solve time by

1/2. This varies as N_ where N is the number of unknowns and

1-2



thus represents a large part of the solution time; 2) The

symmetric matrix formulation requires 1/2 less CPU time and

memory to compute and store the matrix elements since only

the upper half of the matrix is used. Memory requirements vary

as N2 and become the limiting factor for electrical problem size;

3) A user option for computing geometrically symmetric bodies.

This reduces the matrix solution time by another factor of four

and matrix memory storage by a factor of two; and 4) A

centroid approach for computing matrix interaction elements for

all triangle to triangle distances greater than ten triangle

dimensions. For closer spacing the user has three options for

matrix element integration: two numerical / analytical

epproaches or the centroid approach.

The major efficiency for applying MOM3D to electrically large bodies is for computing

symmetric bodies. Then, compared to the patch code descn_oed in [1], MOM3D represents

a factor of FIGHT less in matrix solution time and a factor of FOUR less in required

memory to store matrix elements. Solution time and memory are always the limiting

parameters for electromagnetic analysis codes. MOM3D is designed to use these resources

in an efficient manner allowing larger bodies to be analyzed.

This report discusses the theory behind the analysis as the reader can figure out by looking

at the Table of Contents.
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SECTION 2

GENERAL METHOD OF MOMENTS THEORY

This section discusses the fundamental theory for solving Maxwell's equations as expressed

in the electric field integral equation. This theory may then applied to any geometry, e.g.,

wires, 2D strips, bodies of rcvolutiort, and of course 3D triangle surface patches. References

[2] through [7] contain more detail. The approach followed here is due to Mautz and

Harrington [5] since they derive a very general purpose expression for matrix elements which

then may be applied to many tTpcs of geometries and for many variations of basis expansion

and weight functions.

Which Integral Equation To Use? Maxwell's four differential equations relate magnetic and

electric fields to their electric and magnetic sources of currents and charges. These

differential equations may be transformed to two integral equations for scattered electric and

magnetic fields. They relate the scattered field to surface or volumetric source currents and

charges. Green's vector theorem is used to derive the integral form of Maxwell's equations

[7]. An alternative approach is to consider the scattered fields as derived from vector and

scalar potentials.

The usual fashion for expressing fields when dealing with scattering problems is to express

the total field, for which boundary conditions apply, as the sum of an incident field, which

is what exists at a given location independent of the scattering body, and a scattered field

that is caused by the currents and charges on the scattering body. Thus

E T'd - E" *

nT = +/7

(2-1)
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The incident fields are usually plane waves as specified by propagation direction, wavelength,

and polarization. Spherical or cylindrical wave sources could just as easily be used. E _ is

the mathematical approach of specifying the field duo to outside sources. We do not know

the source current dism'bution, just the resulting field.

The integral form of Maxwell's equations, called the Stratton Chu equations, use the surface

parallel and perpendicular field components as source terms. These are defined as surface

magnetic and electric currents and charges. The total surface fields are defined in terms of

electric and magnetic surface currents and charge densities. If n is the unit vector

perpendicular to the surface, then:

•/= "q'i=A x/_;

++-g, -gx ;

p" =8.,. =,_-_

p" -N.,. -s-g

(2-2)

where J and M are the electric and magnetic currents while p is the corresponding charge

density. Note that electric currents are proportional to tangential magnetic fields while

magnetic currents are proportional to tangential electric fields. The field quantities are the

total fields at the surface.

The Electric Field Integral Equation (EF1E) is the Stratton Chu integral equation for the

scattered electric field:

E-(9 f [y  lg z ×vs P"= .... VelaS
E

(2-3)

The source terms are the electric and magnetic currents and electric charge density.
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The free space Green's function g relates source quantifies to field quantities via phase (time

delay) and 1/R spatial decay. It is

• -jE.II
g = _ (2.4)

4gR

where the wave number vector k points from source to field points and has the magnitude

k ffi 2 x / k. The distance R is from the source point to field point location

e - Iv- _'1 " J(x-x')z + (y_y_)2+ (z_z,)2 (2.5)

The Magnetic Field Integral Equation (MFIE) is the Stratton Chu integral equation for the

scattered magnetic field:

=f [ +.i×vs+ p'vg]dS
p.

The source terms are the magnetic and electric currents and magnetic charge density p'.

For perfect electrically conducting bodies the magnetic currents are identically zero since

there can be no tangential electric field. Then either the EFIE or MFIE may be used.

Typically the EFIE approach is used for open and / or closed surfaces while the MFIE is

used only for closed surfaces (due to problems in numerically evaluating the Green's

function).

MOM3D uses the EFIE approach with electric current unknowns.
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Magnetic currentsmust be included for the more general case when consideringmagnetic

materials,e.g.,radar absorbing material.This doubles the number ofunknowns, with matrix

element memory increasingby four N 2,and matrixsolutiontime increasingby eightN 3. We

also must formulate the system matrix to include the magnetic sources. This requires

additionalanalyticaland computation effort.

i

For Perfect ElectricConductors, PEC, there arc no magnetic source currents or charges

sincethe tangentialE fieldiszero. This greatlysimplifiesthe EFIE and MFIE because now

we only have to solve for the unknown surfacecurrentsJ.

The astutereader willask why we alsodo not explicitlysolve for the charge density. The

reason isthatcontinuityrelatescurrent to surfacecharge density,i.e.,when current flows

into a region the charge density increaseswhile when current flows out of a region the

charge densitydecreases. Mathematically,

V-J= -SP = -jep (2-7)
at

where we have explicitlyassumed time variationof cj'',i.e.,we assume a time harmonic

monochromatic frequency.

Boundary Conditions: The next major step is to specify the boundary conditions on the

tangential electric field. For resistive boundary conditions the tangential electric field is

equal to the surface impedance _ times the current density J. If the surface is a perfect

conductor, _ - O, then we have the requirement that the tangential E field vanish. When

the field observation point is on the body surface we have

(2-8)
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The known quantifies are the incident field and surface impedance. The unknown is the

current density J (which also appears under the integral sign of the EFIE). The boundary

conditions lead to a Friedholm integral equation. When 7-_a is zero, this is an integral

equation of the first kind, Le., the unknown J appears only under the integral, or when non

zero, an integral equation of the second kind since J also appears outside the integral.

It is customary to rearrange the unknowns to the left and known quantities to the right:

-S x _'- + Z=_7 - _ x E_" (2-9)

It is also customary to write the integral expression for Ea as a linear operator L operating

on the current J, as L(J):

v,-J
u_ _ -_- : jk_ f t Jg - "F- v,g I dS (2-10)

where kTl= e/_,ee = k/_ and have setthe magneticsourcesto zero.

Matrix Solution of the Integral Equation: The formal solution of the integral equation

yields a matrix or set of simultaneous equations. Sub domain basis functions with unknown

coefficients j represent the unknown surface current:

N

7. I7.i,l,(t) (2-.)
J=l
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The sub-domainbasisfunction t(t) contains the vector and functional characteristics for the

local surface current expansion function. This representation of a function is a

generalization of other types of series expansions such as Taylor or Fourier.

The boundary conditions are enforced at each point or region on the body to determine the

unknown currents. The boundary conditions, where we lmow the solution, are enforced at

N unique locations on the body, i.e., the tangential field must be equal to _ J. At each

location on the body the total field is the sum of the incident field plus the field caused

(scattered) by currents located on eveo' other part of the body. This leads to a coupled

system of equations by which every part of the body affects every other part ( Maxwelrs

equations are elliptic ).

Impedance matrix elements express mutual body coupling. When enforcing the BC at

specified locations on the body, we sample the region surrounding the BC location.

Mathematically we obtain an average value by using a weight function for each BC

enforcement location. Explicitly we multiply the boundary condition equation by a surface

tangential vector weight function W and use an inner product integral defined as

where the integration is over the p th surface area which surrounds the p th BC match point.

The current series expansion is inserted into EFIE expression for scattered field and the

boundary conditions applied to obtain the matrix form of the integral equation.

The inner product is a linear operation which slides over the integrals. A set of N equations

for N unknown current coefficients results:
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q-I

forp = I toN (2-13)

for N unique locations on the body. A matrix, i.e., set of simultaneous equations, represents

the original elliptic integral equation.

The matrix element interaction between body surface patch areas p and q is the inner

product < W_, L(f,t ) > = 7_._q. The voltage vector solution forcing function is the fight hand

side inner product, Vq = < Wq, E_ >.

With this notation, the original integral equation becomes a matrix equation:

ZII Z12 --.

zm zm...

z_ jl '

J2

• |

zl_ JN.I

vl !

V21

vNJ

(2-14)

or in compact matrix notation

where Z is a N by N square matrix, J is the unknown current vector, and V is the voltage

vector forcing function. J and V are column vectors with N rows.

The solution is obtained by computing the matrix elements 7_ and solving for the currents

J for various body excitations forcing functions V, e.g., plane waves or antenna voltage ports:
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,I = _v-I _ (2-16)

Voltage Vector:. The forcing function for scattering problems is usually specified as an

incident plane wave. The tangential component of the incident field is automatically

obtained from the surfacevector weight function W which isdefined tangent to the body

surface. The excitationfor RCS computations isusuallya plane wave:

E_ " £o _" e-J'_"'J (2-17)

where Eo isthe wave amplitude, u isthe polarizationunitvector,k_ isthe vector direction

of the plane wave, and R isany coordinate locationvector. Planes of constant phase are

perpendicular toI_. The components of V for plane wave incidence are then:

(2-18)

where u" "e of, is the polarization unit vector, k_ is the wave number in the direction of

propagation of the incident wave, and P_ the local coordinates of the q th sub-domain.

Matrix Elements: Mautz and Harrington, [5], derived a universal formula for computing

matrix elements. This recipe is applicable to any geometry for arbitrary choice of expansion

functions f and weight functions W. The expression for matrix elements is:

2-8



z_--<#,, z_? >= +jkn f f[(_, "1,)s +_ #,.vg ] dS,dS, (2-19)

which for three dimensional surfaces becomes a four fold integral, i.e., surface to surface.

Reference [5] used the 2D surface divergence theorem on a closed surface to convert the

second term dot product:

f _. vgds - -f s v._ ds (2-20)

to arrive at the universal matrix element interaction expression:

z_ =+jk_f as,, (v.# r) (v_,) ] e-:'J (2-21)
k2 4xR

This expression is the "mother of all matrix element formulas." It applies to all geometries

and to all types of expansion functions f and weight functions W. It applies to bodies of

revolution (BOR's), wires, 2-d strips, 3-D patch, wires attached to BOR's or patches, BOR's

coupled with 3-D patches, etc..

Scattered Field: The heart of the MOM solution is to solve for the current distn'bution on

the body. From these currents one is then often interested in computing the resulting

radiation pattern, E a, from which we obtain radar cross section or antenna gain patterns.

Far field radiation is given by the transverse components of the electromagnetic vector

potential A:
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_',.=(0,¢) = -j_(_'.i) = -jo,. f (_".i) g (2-22)

i ,

Rp

Figure 2-1 Far field distance approximation geometry

where ¢ = O or _ polarization. The standard approximation for the distance from source

to field point is then made using the law of Cosines, Figure 2-1, which is valid whenever the

field point distance is much greater than th¢ local body dimensions:

(2-23)

where 1% is the distance to the far field point, 1_, is a local source point on the body, and

R o points in the same direction as k"==. The distance R in the Green's function is

approximated by 1% in the denominator (amplitud¢) and by the two term approximation for

the phas¢ term. The series current basis function expansion is used for the curr¢nt J. The
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final expression for scattered field then becomes a complex dot product of the row

measurement vector R and the solution column vector j:
#

4xR 0
(2-24)

where the row vector R is

where the fp is the current expansion function for the p th sub-domain, n'" o or, is the

polarization, _ is in the direction of the scattered field, and 1_ is the local coordinates of

the p th sub-domain. Harrington [6] derives the same formulation using reciprocity.

For backseatter _ = - 1_ therefore the expression for scattered field is the same as the

voltage vector expression. If f = W, the same computation routine may be used to compute

either.

Computer Resource Considerations: The number of unknowns in a moment solution is

proportional to the body size as measured in wavelengths since the currents must be sampled

on a wavelength scale, typically 7 to 10 per wavelength. Computer resources of memory and

available cpu time limits the body size which one may compute.

Surface currents require vector unknowns. Each sub-domain area requires two scalar

unknowns, one for each basis vector direction. Let us characterize a body by dimension L

and area L 2. If we require n unknowns per linear dimension, then a surface with area A

would require 2n 2 unknowns per square-wave length (98 to 200 unknowns) of area. Matrix
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storage then would be proportional to ( (n L) 2 )z ffi n' L'. Matrix solution time, which

varies as N 3' would be proportional to ((nL) z )3 ffi ns Ls. Thus as the body grows in

electrical size, required memory grows as Oinear size) ( and matrix solution time grows as

(linear size) _.

Linear sample density n should be as small as practical and still yield a satisfactory solution.

This will reduce memory requirements (proportional to n4) and matrix solution time

(proportional to n_). Computer resource requirements grow very rapidly with linear body

size L and sample density n. We thus see the importance of optimizing the algorithm to

conserve computer memory and time.

It should be noted that a fundamental reformulation of the analysis will be required if we

are to compute very large electrical bodies. Alternately parallel computer architecture will

be required.

The impedance matrix is of rank N2, i.e., N unknowns. This means that at least Nz memory

locations be available to store the complex matrix elements. This is the dominant

requirement for memory storage. Matrix fill cpu time will also be proportional to N'.

Matrix solution time is proportional to N3. Matrix inversion (or equivalent process)

dominates the solution time for large problems. Various approaches can change the

proportionality constant (as optimized in MOM3D). For a given geometry and frequency,

the impedance matrix may be computed, solved, and then saved to disk storage. Then

various analysis options may later be performed using the saved LU decomposed matrix.

Matrix solution may be obtained in principle by a variety of approaches: inverse, Gaussian

elimination, Crammer's rule, LU decomposition, iterative solutions, etc.. As discussed in [2],

[8], and [9], LU matrix factorization requires 1/3 the time of direct matrix inversion.

Therefore MOM3D utilized the LU factorization approach.
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The LINPAK [9] l_rary of matrix routinesfor LU decompositionand backsolution was

used. The matrix formulation was specifically made symmetric by choosing Galerkin weight

functions, i.e., r = w and the LINPAK l_rary routines for symmetric matrices was used.

This required 1/2 less matrix storage and computation time, and, more important, reduced

the LU decomposition time'by 1/2, which for large problems is significant.

Future adaptations could take advantage of parallel processor architectures using matrix

l_raries specific to these machines, such as the LAPACK l_rary now under development,

reference [10].

When using LU decomposition, the back solution time to compute the currents is

proportional to N 2. For backscatter RCS problems, a new voltage vector and current

solution is required for each excitation angle. Therefore the solution time becomes

proportional to M,o_ N_. Since we typically compute backscatter every degree, M may

equal 181 to 361 depending on the angle range. Thus for small bodies, if N is less than M,

the back solution time may become greater than the LU decomposition time.

The time to compute the voltage or row vectors is proportional to the number of unknowns

N. This is not a significant time requirement compared to back solution time. Other

computation overhead is required to compute the required geometry parameters from the

input geometry description.
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SECTION3

MOM3D SURFACEPATCHFORMULATION

The theorydevelopedinSection2 iscompletelygeneral.Thissectionwillapplythetheory

to the surface triangle basis functions introduced by Rao, Wilton, and Glisson [1]. Matrix

and body symmetries are used in MOM3D to create a computational efficient code

compared to [1]. MOM3D has diagnostic capabilities for imaging, near fields, and

currents, as well as for backscatter & bistafic RCS and antenna gain pattern computations.

Surface patch basis functions must: 1) model two independent surface vector directions; 2)

have desirable derivative properties since the second term in the matrix element formula

requires the divergence of J; and 3) model arbitra_ curved or planar surfaces. A

helNt.geo gZ = R5.0 El. - 30.0 0ISTfg_2E • I00.0 HIFIP_E0

_7_

HEL.HET: d = 2,0q', a = 6.12" Bees = 1,0
REFLECTION AXIS ............ : 1
Number 04 Polnte, NPOINT-z lq5

• o_ Le_;t Trleu_glel, NLTR[fl=t 262
Llntte, 1=14. 2-Fett, 3=[nchee: 3
_r4gce [mped4u'lce (]=le, [mJ ! O00.O 00,00

Figure 3-1 Arbitrary surface modeled by triangular patches

3-1 '



rectangular surface patch basis function code is reported in [11] but it has obvious problems

when modeling arbitrary curved surfaces. These three criteria were used by [1] to develop

the surface triangle basis functions. They can model a wide range of geometries as

illustrated in Figure 3-1. Both open and closed geometries can be modeled.

Current Couple: A pair of coupled triangles

that share a common edge were introduced

by [1] as the fundamental vector basis

function, Figure 3-2. The vector current

flow is from one vertex flowing across the

common edge toward the opposite vertex.

Each triangle pair is a coup/e and is the

fundamental unknown quantity in the

analysis. This basis function is such that its Figure 3-2 Triangle couple basis function

magnitude is like a triangular hat function.

It has the value zero when r is at the vertex, unity when r is anywhere on the common edge,

and zero when r is at the opposite vertex. The vector basis function associated with the q

th edge is then

2,4 

2,,t;

(3-1)

By arbitrary definition, current flow is from the first triangle of area A ÷ to the second

triangle of area A'. The length of the common edge is lq, p±q is a vector from either vertex

toward the common edge, and S is a unity sign showing current flow direction. This

definition is slightly different from that in [1] in that S - +- 1 is explicitly used. This
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simplifies the following analysis and resulting computer code since the vector p can always

have a common definition regardless of whether a triangle is + or -. This basis function is

the surface version of triangle basis functions used for wire or 2D analysis. It has the value

of zero when p is at either vertex and a value of unity when p is on the common edge. The

slope or derivative (divergence) is positive constant in the + triangle and negative constant

in the - triangle. This derivative feature is such that the triangular hat current yields a pulse

doublet charge dism'bution.

The surface divergence operator for triangular patch geometry is

v, 1 a(P,"L) (3-2)
p ap

which results in the following expression for the surface divergence of the vector basis

function (charge density)

; 5_ = +1
4"

Aq

A;

(3-3)

These vector basis functions are used to represent (approximate) the surface currents.

Since a triangle has three sides, and if each side has a common neighbor, then it conm'butes

up to three basis functions (couples). The current in the q th patch is represented by up to

three basis vectors. These are not orthogonal as is the case of usual basis vectors, however,

they are independent and "span the space" to represent any physical direction of current

required by the solution of Maxwelrs equations.
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Couple Basis Function Average (Moment): The fundamental current vector unknown is

between two adjacent common triangles and not a single triangle by itself. It is convenient

to descn_oe the location of the couple centroid. The average or moment over the two

triangles of the couple basis function is [1]:

: (.4;÷n;) 2 (A;+A;)

(A;÷A;)

(3-4)

where p_'_ is the vector from the free vertex

to the centroid and r_± is the position

vector of the triangle centroid, Figure 313.

We see that the average of the basis

function over the triangle couple pair is

equal to the common edge length times the

vector between the centroid of each

triangle. The center of this vector is the

center of the vector basis function I"_n_.

.- Common edge

p+

Figure 3-3 Net couple moment (current) is
from triangle centroid to centroid

Matrix Elements: The development of

expressions for matrix element interaction requires one to choose a specific weight function

W and to consider if a symmetric matrix is to be obtained, i.e, Z_ = Zqp. Various options

are possl_ole as discussed by [2] and [7]. The general expression of matrix elements for three

dimensional surfaces, Section 2, shows that Z_ is a four fold integral, i.e., the E field

integrated over surface patch p (with averaging weight function W) as caused by currents

located on surface patch q with basis function f. Reference [1] simplified the computation

by choosing delta or point matching weight functions so that a two fold integral resulted
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(point to surface), however a symmetric matrix did not result. To obtain matrix symmetry,

the weight functions must be of the same form as the current expansion functions, Wq = fq,

which is called the Galerkin choice for W. The penalty paid to achieve matrix symmetry

(with resultant reduction in LU decomposition and memory storage) is the requirement for

four fold integration. As we shall shortly see, the centroid integration approximation

eliminates this integration requirement. (We can have our cake and eat it too?)

The reader can easily see from Section 2

matrix element expression that a Galerkin

choice for weights yields a symmetric

matrix. This will be our choice. All we

have to do is to insert the appropriate

values to obtain the required expression. In

doing this we must remember that the

integrations are from one pair (couple) of

triangles to another pair (couple), Figure 3-

4. The result is:

Figure 3-4 Matrix element interaction is

between pairs Of triangles (four terms)

= f ds, f dSq[.ffp 1_ • -]titv. ]7-F (3-5)
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Since each couple has two triangles, each matrix element has four terms, i.e., each triangle

interacting with the others, (+,+), (+,-), (-,+), and (-,-) :

_. . ,,, , f ,_;f _;[1;.1;-_.%/,'o.1:,,.
f dS;f dS;[I; "l;-

f dS;f dS;El; "l_-

f dS;f dS;[1; "1_- V"l;f "1;1_ }

v-1; _-1. 1,
k2

v.g v "K]_ .
k2

(3-6)

The next step is to pull out of the indicated integration the constant parameters and to

define the major Green's function integrals. We define GO)pqand G(°)pq normalized to

triangle patch areas:

7(1)_ 1 f dS,f dS,(V,.V,) g
,4, Aq

1

a_ = -_ f dS,f dS. _

(3-7)
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We then arrive at the required expression for the matrix elements by using the appropriate

expressions for f and divergence f:

Sp. Sq. [ 114 -p,q.C'(') -llk 2 Op_q. ] +

s,.s,. [ 114_-"' o__ ] ÷_p.q. - 1/k 2

s,.s,. [ 1/4..,..a"- 1/k_%_.1 +

s,.Sq. [ 1/4Gc_?_ - lit 2 o_. . l )
Pq Pq

(3-8)

This is our exact (numerically) desired expression. No approximations are made at this point

other than the choice for the current expansion functions f and weights W = f.

Green's Function Computation and Approximations: The principal task is now to compute

G (1) and G (°) that integrate the free space Greens's functions over each pair Of triangles.

This of course is a four fold surface to surface interaction. G (1)and G (°) are related to the

electromagnetic vector and scalar potentials. We start by estimating the dominate term in

the matrix element computation. We assume that the surface is sampled such that p < k/10

so that the ratio of the first term in Z (vector potential) to the second term (scalar potential)

is approximately:

Vector 0.25 _- _ _2ffi < -- -" 0.1 (3-9)
Scalar 11 k2 100

which shows that the dominant interaction between surface patches is from the scalar

electrostatic term. Based on this observation, we approximate the G <_>integral as:
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where p_ o, q is the vector from the free vertex to the triangle centroid, i.e., we have used a

centroid approximation for the vector dot product portion of the integrand in G¢1).

Centroid Appmximtion: The computation of G¢°)remains. This is still a surface to surface

four fold integration involving the free space Green's function as the integrand. The

appendix discusses a combination analytical / numerical integration approach, i.e., one

surface integration is done analytically and the second surface integration is done with either

a three or one point numerical integration. This section discusses the centroid approach.

The integrand has a 1/R intensity

decay and phase (time) delay.

The surface patches have linear

dimensions less than k/10.

Therefore the stationary part of

the phase involves the distance

between triangle centroids,

Figure 3-5, while the varying

portion has at most a 2 (7320) -

kilO - 36 ° variation in phase. If

we recall the typical

approximation used in plane

rp_ Fire/ ..\\ ,/

Figure 3-5 Distance between triangles using centroid

wave EM analysis, a 22.5 ° variation is considered constant. Thus the phase part of the

integrand is relatively constant centered on the centroid value.

The 1/R amplitude portion of the integrand is dominated by the distance between triangle

centroids that is just the leading term of a Taylor series (expanded about the centroid value).

3-8



Consider Figure 3-5 where the distancebetween sourceand fieldpoints,I_ isexpressed in

terms of the vectorfrom trianglecentroids,Rm cand two localvectorsineach triangle,rsand

rq. Then we have

-ta;.l
(3-11)

With thiscentroid approximation, G (°)becomes a very simple expression,i.e.,justthe free

space Green's function evaluated at the centroiddistance:

= AfA f dS,f dS,
• -l_P_ • -_"

- (3-12)

4X_ 4_

Notice that no integrations are required.

Self Term Approximation: Self term matrix elements represent the field at a couple due to

itsown currents,7__. Selfterm quantifiesalsohave fourterms,two selftriangles,(+,+) and

(-,-)and two adjacent triangles,(+,-) and (-,+). When evaluatingthe selftriangle,the

centroiddistanceiszero and clearlyan alternativeexpressionisrequired to prevent the non-

physicalcase of divisionby zero. The approach we willuse isthatby Harrington [6]who

simply integrated the free space Green's functionover a patch thathe took to be circular

with a radius defined such that the circularpatch had the equivalent area to the actual

(triangle)patch under consideration. The main contn'butionto the integralisfrom the

region surrounding the centroid thus the resultdoes not change appreciablyprovided the

triangleaspect ratioisnot extreme, i.e.,the heightto width ratioremains near unity. The

selfterm approximation startsby writingthe selfterm as:
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1 • -jtR (3-13)

The integrand is then expanded about the center of the triangle, R = 0, and only the first

two terms retained (remember that R < < 7.):

e -/ttt_ 1 [ 1 -jkR +...] .. _1 _jk (3-14)
R R R

The self term then becomes

a.., - I f[ 1 -jk]dS ; dS =2_RdR then- 4xA R

. 13. ,5I
(3..ls)

This self term approximation along with the centroid approximation is used whenever

MOM3D users specify centroid integration for all couples. The analytical / numerical

approaches discussed in the appendix yield approximately the same result for self terms.

Voltage Vector:. The right hand side forcing function of the matrix equation is the voltage

vector. When computing either backscatter or bistatic radar cross section the voltage vector

is due to the specified incident plane wave:
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_ = _.-e=, Eo e-lt*'J (3-16)

where the polarization reference is to a spherical coordinate system and may be either O or

_, the direction of propagation is k_, and Eo is the amplitude taken as either I volt / meter

or in MOM3D _ n = 377 volt / meter to reference currents to a unit incident magnetic

field.

The voltage vector for our Galerkin weight functions, W = f, is then

v, = </,, _> = _ _ f _;._ (3-17)
2A_ f _P'_ d$_ + 2A_ dS;

The centroid approximation is used to compute the two fold surface integral:

v, = _ i s; (_,..a'), -jr''c + s; (__.a-)-jE--.¢._ t Zo (3-1s)
2

In MOM3D, each row of the column voltage vector is computed by this expression.

Another approach for evaluating the voltage vector is to use fm for the integration over the

two triangles forming the couple:

(3-19)
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where the specific form for f m is used and the incident field phase is evaluated at the

midpoint between triangle centroids.

Scattered Field: The field radiated by the currents on the body is computed using the

general expression developed in Section 2. The radiation integral is evaluated as a complex

dot product of a row measurement vector with the column current vector. The elements of

the row measurement vector, when Galerkin weight functions are used, W = f, has

identically the same form as the expression for the voltage vector. The astute reader will

notice that the elements of the row vector are defined for _ pointing away from the local

origin while the voltage vector is elements are defined for k_ pointing toward the local

origin. This change of sign is what makes the row and voltage vectors have equivalent form.

The reader is cautioned that while the voltage vector subroutine may be used to compute

the row vector, Vp is not equal to R punless we are computing the backscatter case when kTM

= - k _. The elements of k, as expressed in rectangular coordinates in terms of the polar

angle 0 and azimuth angle qi for an incident wave toward the origin, are

E_ _ 2 _ (-ccs4_sine, -sin(I) sine, -cosO) (3-20)

This is a radial vector pointed toward the origin. The two polarization unit vectors are

orthogonal to k. The usual choice is to pick the 0 and q_directions, tangent to a sphere, as

a e = ( cosO cos4), cosO sinO, -sinO )

u-'* - ( -m4,, cos4,, o )

(3-21)
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Figure 3-6 Polarization unit vectors and
incident field unit vector
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SECTION 4

GEOMETRY SYMMETRY CONSIDERATIONS

Considerable reduction in computer resources can occur if the geometry has symmetry (see

Miller [2]). Examples of body symmetry would be bodies of revolution, bodies with planes

of symmetry such as aircraft, and bodies such as hexagons with multiple symmetry planes.

Body symmetry reduces solution resources because:

The impedance matrix represents the interaction of each part of the body with

another, therefore symmetry implies that the coupling between similar body

parts is equivalent. This means we do not need to recompute those elements

of the impedance matrix. This implies a reduction in matrix element storage

and compute time, an N" dependence.

The solution of the impedance matrix can take advantage of equivalent sub

matrices to reduce the solution time N 3 dependence for LU decomposition.

Body symmetrydoesnotautomaticnUyreduce computerresources.The solutionalgorithmmust

be specificallydesignedtoincorporatesymmetry.

Body symmetry is a completely different concept than matrix symmetry obtained by using

Galerkin weight functions.

MOM3D solves body geometries with either no symmetry or with a plane of mirror symmetry

about the X, Y, or Z

With body symmetry the impedance matrix splits into two smaller matrices, each with

approximate rank N/2 where N is the total number of unknowns on the body. The following

efficiencies result:
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Matrix storagereducedby two. We have two matrices of approximate rank

N/2, therefore matrix fill time and memory storage is: 2 (N/2) z ffi N 2 / 2.

Matrix LU decomposition solution time reduced by four. Two matrices of

rank N/2 require a solution time of: 2 (N/2) 3 ffi N3 / 4.

The savings in computer resources becomes very significant for large electrical bodies when

N is large.

Mirror Geometry Symmetry: MOM3D has

incorporated mirror symmetry about either

the x, y, or z axes if specified by the user.

The geometry is described somewhat

arbitrary as left side, right side, spine, and

reflection plane, Figure 4-1. The left and

right sides are those couples that are a//

either on the left or right. The spine

couple unknowns bridge between left and

right sides, i.e., they have one triangle on

the left and the other on the right side.

V

taR_

zjL

Figure4-1 Geometry example that has

symmetry about the X = 0 (Y-Z.) plane.

The reflection plane couple unknowns are not reflected since they are on the symmetry

plane.

We make use of specific relationships between these four type of unknowns to express the

s_tem impedance matrix as two separate matrices called Z even and Z odd.

System Matrix: The system impedance matrix is written in terms of these four types of

unknowns: ZLL and Z_ the left and right side unknowns; Zss the spine unknowns; and Zvv

the reflection plane unknowns. With this breakdown the system matrix equation becomes
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zu z_ z_ zLv

z_ z_ zffi z_

z_ z_ z_ z_

z,z z_ z_ z_

v_

i, v,
z

(4-1)

Matrix dement relationships: Geometry

symmetry moans that matrix elements are

the same for loft-left and right-right sides,

i.e., the interaction of the loft side of the

body with itself is the same as the right side

of the body with itself, Z,u. ffi Z_. The

reflected couples arc defined to haw an

opposite direction, Figure 4-2, so that the

interaction of the spine with the loft side is

the same as the interaction of the spine

with the right side, ZLs - Zas and the

Datz_ Imm ¢lmmm

_mmW_m

Figure4-2 Reflected right couple has

opposite direction so that ZLS = Z_ and ZLV

--.. ZRV.

interaction of the left side with the reflection plane couples is the negative of the interaction

of the right side, ZLV ffi - Zav. The interaction of the spine couples, which are perpendicular

to the reflection plane couples, is zero, Zsv = Zvs ffi 0. Due to matrix symmctl T the

following arc equivalent: ZLa = _ ZLs ffi ZSL, ZLV ffi ZvL, ZBs ffi Zsa, and Zgv = Zva.

The proof of these assertions is loft to the reader.

We develop the oven and odd impedance matrices by multiplying out the system matrix

equation, adding and subtracting various rows, and then use the sub-matrix equivalences.

Multiplying out yields:

4-3



zuIL ÷ z_z, ÷ z=z, ÷ zL,,t,,-vL (i)

Z,_ZL ÷ z_,_. ÷ z_. ÷ z,_ . v_ (4)

(4-2)

We defineeven and odd as follows:matrices_ and Zoaa;unknown currentvectorsj_,_

and Joaa;and voltagevectorsV_ and Voaa.

We then start by adding and then subtracting (1) and (2) to obtain:

(z,,÷z_)(z,+_,_) ÷2z=_z ;(%+%)

( z,,.- z_, )( _; - t_ ) + 2z_,_ v - (.% - v, ) (6)

The even system of equations is defined as the set (5) and the spine set (3) with a factor of

2 incorporated to simplify later equations:

(4-4)

The odd system of equations is defined as the set (6) and the reflection plane set (4) along

with the factor of 2:
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(4-5)

Iftheoriginalsystemmatrixissymmetricdue to Galerkinchoiceofweightfunctions,thenthe
i

even and odd matrices are also symmetric.

The explicit even matrix and column vectors are:

Z M

(4-6)

V _ =

while the odd matrix and column vectors are:

zodd
= [ 2 (Z/_ -z/al)2ZI_ 2ZLV]ZFv

IOdd (4-7)
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MOM3D computes Z and V in normal fashiontocreateZ even/odd which arc then solved

via LU matrix decomposition. The even/odd voltagevector iscomputed from the normal

V and the resulting even/odd currents are computed. Finally, the left and fight side currents

arc obtained for scattered field analysis from the even/odd currents:

Z

(Zm

(4-8)

For bodies that have a plane of symmetry, thisalgorithm approximately reduces matrix

solutiontime by four and matrix filland storagerequirements by two.

Body symmetry and matrix symmetry form the cornerstone concepts for making MOM3D a

.computation efficient algorithtrL
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SECTION 5

BISTATIC IMAGE ANALYSIS USING k SPACE CONCEPTS

The experimentaldevelopment of microwave imagesas pioneeredby Dean Mensa [12]is

one of the most powerful tools used to understand the scattering from various geometries.

Imaging may be in one dimension, i.e. down range; or in two dimensions, i.e., down and

cross range. This capability allows one to understand the scattering process in terms of

specific scattering centers and mechanisms. Image development has been mostly

experimental. While one could apply the same methods to predictive scattering algorithms,

the computation burden has always been considered to great. This occurs because,

experimentally, down range information is obtained by illuminating the target over a

bandwidth of frequencies typically numbering 16, 32, 64, 128 or even 512. To do this with

a method of moments analysis, one would have to recompute and solve the system matrix

for each frequency. This computation burden is so great for large problems that the swept

frequency approach is seldom pursued.

B. A. Cooper developed a new approach that requires only one computation of induced

currents and therefore only one MOM matrix computation for down range images. A

formal bistatic k space image theory was then developed by the author. This formulation

computed cross range images without smear. The bistatic k space analytical image technique

does not require a MOM code matrix solution for each frequency. Only one current

distribution (matrix computation) is computed at the frequency of interest. The image is the

Fourier transform of the k space bistafic scattered radiation for values of _ that

correspond to downrange and cross range. The natural Fourier transform variables are wave

number k and spatial position R. If we compute a bistatic field as a function of _ ffi

(k_'_'P, km" _'_) then the Fourier transform of the scattered field is naturally a function

of the transformed spatial coordinates, R_ = (R_'ffi'p, R '_''_). The computation of the

scattered field in k space is a generalization of the standard bistatic radiation integral. The

difference is that E _ is computed in term of k_ for down and/or down/cross range rather
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than in terms of the usualbistatic angles(0,_). Bodycurrentsare computedonly once at

the userspecifiedincident angleandpolarization.

ExperimentalImge Concepts:We start the discussion by looking at how experimentalist's

obtain microwave images. This will form a background for the k space analytical image

development.

The fundamental requirement for imaging is to obtain a scattering response that is a

function of body location. This is done by causing the relative phase to change in both clown

and cross range. Down range phase is accomplished by sweeping the frequency which

changes the relative downrange position (phase) of the scattering centers. Cross range phase

is accomplished by rotating the body. In an electromagnetic sense, we rubber band or

stretch the body in phase (time delay) so that we can reconstruct the physical scattering

locations via the Fourier transform. Experimentally, the only way to move scattering centers

in down range is to vary the number of wavelengths in a down range direction, i.e., change

the frequency. Greater detail may be found in [12] and [13] and the author's section of

Chapter 8 [18] taken from RADAR REFLECrIVITY, 2nd edition.

The limitations of experimental imaging are resolution and image smear or focus.

Resolution increases with bandwidth:

A•- C = k 1 (4-5)
2Af 2 (Af/f)

Typical experimental systems are usually bandwidth limited although a few experimentalists

have pieced together body responses over several waveguide bands. A 10% bandwidth yields

approximately a 5 wavelength resolution. At X band this is usually satisfactory, while at L

band or VHF this clearly is not very practical.
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Cross range resolution is increased by increasing the angular extent over which the model

is rotated. The small angle approximation, cos e .. 1 and sin 0 - e, however, limits

resolution. Large angle extent causes the image to smear and become de-focused. It is

poss_le to refocus the image with an appropriate algorithm, but this becomes a difficult

image processing factor.

Additional concerns with experimental images arc: 1) at what frequency does the image

represent (sincethe image must bc obtained over a bandwidth of frequencies)?; 2) what

angle does the image representfor crossrange sincethe model must bc rotatedthrough a

finiteangular extent?;and 3) what physicalscatteringmechanisms are we not observing or

interpretingincorrectlydue to the frequency and angular rotationsweep?

Bistatic k Space lmge Background: The initial concept was explored by Cooper who

developed the technique for down range images for a body of revolution MOM code using

the experimental image approach with a synthetic frequency sweep in the radiation integral.

It was soon apparent that hig h resolution images in down range were poss_te leading to

spatial resolutions approaching _2 and most important, requiring only one MOM code

matrix computation and inversion to compute the body currents. Very useful diagnostic

information could bc analytically computed with any MOM code for a very small additional

computation cost.

When this technique was applied by the author to compute two dimensional images using

the synthetic approach with frequency sweep and body rotation as descn_ocd in [18], the wide

bandwidth and angular rotation extent violated the small anglo approximation. The result

was a de-focusing (smear) of the 2D images and scattering amplitudes. Clearly one could

have restricted the technique to small angular sweeps; but this would have negated the

desirable high resolution.

To achieve high resolution in both range and cross range without image de-focus, the author

reformulated the image mathematics from the experimental approach where frequency and

angle are the primary variables to an analytical bistatic k space approach where the primary
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variables are the bistatic wave number in down and cross range directions and the

corresponding transform spatial position variables in down and cross range.

kz

k
X

ky

Figure 4-5 Bistafic image k space

A natural bistatic k vector for down and cross range corresponds to the spherical coordinates

of ( k,, k,, k, ), Figure 5-1. The downrange direction is radial, k,, while the cross range

direction is in a plane perpendicular to the radial down range direction, i.e., either ko or k,.

A full three dimensional image could be computed using this approach. The present

implementation is limited to either downrange or down / cross range.

The bistatic k space image technique has the potential for the following (not all are

presently implemented in MOM3D):

Resolution up to k/2 unlimited by the usual experimental

frequency and angle extent bandwidth concerns;
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Image focus / smear does not occur due to the formulation of

the approach;

Images are computed at the frequency and angle of body

excitation. The body currents are computed only for this k_.

In contrast to the experimental approach, the currents do not

change with changes in the bistatic k_ vector sweep;

One, two, or three dimensional images may be obtained. The

limiting feature for obtaining 3D images is the display of the

solution since multidimensional FFT algorithms are available;

The scattering body is imaged in a bistatic sense from the same

direction as the excitation, i.e., a backscatter image. However,

a more general bistatic approach is entirely poss_le since the

center of k'_ is not required to be the negative of k=;

A co-polarized image is implemented, but a cross polarized

image could easily be computed.

The above list of poss_ilities shows that the bistatic analytical approach to imaging can

potentially yieM substantially more information than ¢_imental images. The bistatic image

approach can be applied to any predictive algorithm for electromagnetic scattering or antenna

radiation, e.g., Physical Optic_

We can expect to see similarities and differences for a given target as imaged experimentally

with swept frequency versus the analytical bistatic image. The analytical image is obtained

from body currents that are excited only at one frequency and one excitation angle while the

experimental image is a response over a bandwidth of frequencies and angle sector

illumination. Experience must show how the two approaches will differ. One could argue

that the bistatic image is a truer representation of the physical scattering mechanisms since
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the body is truly excited at one frequency and angle. Thus line source radiation mechanisms

such as reflected edge or surface traveling waves should image as radiative sources over the

entire edge or surface as compared to the experimental approach where these mechanisms

always show as emanating from an aft edge or tip vertex ( because the swept frequency

stationary phase point here is only at the fixed geometry end region ).

Bistatic Image Theory: The key breakthrough in developing this approach for multiple

dimensions was to abandon the experimental frequency and body rotation approach. The

new concept falls naturally out of standard FFT theory [14]. We start by writing the bistatic

scattered field as a function of three spatial coordinates that naturally constitute an image,

i.e., down range and in a plane perpendicular to down range:

This is the Fourier transform for the bistatic scattered field computed in kTM space, i.e., the

square magnitude of this quantity converted to RCS is the image, i.e., intensity as a function

of spatial position.

The variables are:

[E,J(r,,re, r, )]2 is proportional to the amplitude of the desired image, e.g.,

RCS;

id_ = k¢_,,_=_ ,_. m,_) = (lq,l%,k,) is the wave number in spherical

coordinates corresponding to down range and / or the two cross range

directions;

E='°(k_,k -'_) is the scattered field/n/_ space computed from the radiation

integral based on body currents excited on the body due to any form of
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voltage vector excitation. For scattering problems this excitation is k_. The

received (image) and transmitted polarizations correspond to a, 13= Oor q_;

W(_ is a standard FFT window weight functionsuch as Hamming,

Hanning, etc..

The downrange 1_ - 1_ vector component is centered on the free space value of k,

k, = 2__x_Ak, (4-7)
_'o

Once we have computed the scattered field E"P(km,k _) in bistatic k space, equation 5-2

is the Fourier transform of the k space scattered field. The key is to compute the scattered

field in terms of k_ vector components that naturally correspon d to transformed image

spatial coordinates.

The bistatic k space scattered field is computed from the standard radiation integral once

body currents have been obtained for any given excitation:

cP'=,E = f { c,c } (4-8)

where n "= e or, is the receiver polarization unit vector, J) = * o,, are the body currents

resulting from plane wave excitation at the angle corresponding to k _ and polarization 13.

Approach: The steps required to obtain an image are: 1) Compute body currents due to

desired excitation, e.g., plane wave for scattering or port voltages for antenna radiation; 2)

Specify image extent centered over the body;, 3) Specify the approximate resolution desired;

4) Compute the scattered electric field in k_ = (kdin, k_=) space; 5) Pad the data arraY
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with zeros to obtain an array (linear or square) that is a power of 2 in length and perform

the FFT; and 6) Resort the data and display the one, two, or three dimensional image.

Image extent, resolution, k space bandwidth, and number of steps in a Fourier transform are

interrelated. Image resolution and bandwidth are inversely related such that fine resolution

requires large bandwidth:

A • = 2-2-x (4-9)
,Xk

Window extent (centered over the body) is an integral number of resolution cells M:

Window extent = M AR (4-10)

M is also the order of the Fourier transform, not necessarily a power of 2. The user then

arbitrarily establishes desired independent parameters and computes the others from the

above two equations.

Two factors limit resolution. The first is the number of basis functions per wavelength used

to represent the current dism3mtion. If too great a resolution is requested, then one images

the individual basis functions. This is not physical. The second consideration is more

fundamental. Since the spatial current behavior is inherently on a wavelength scale, it makes

little sense to specify resolutions greater than 7./2.

In MOM3D the user specifies an exact window extent and an approximate resolution to

compute the number of increments M in 1_ space. The actual resolution is then

recomputed using M. The bistatic electric field produced from the currents excited on the

body is computed at these M k space locations in down range or at M by M k space
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locations for 2-D down/cross range images. The Fourier transform is then done using a Fast

Fourier Transform algorithm. Since the FFT requires data arrays that are powers of two,

the data are padded with zeros to the next largest 2s. Zero padding smooths the resulting

transformed image data, however, the original resolution remains unchanged.

The radiation integral used to evaluate E' requires that I_ be input in terms of rectangular

coordinates. The fundamental variation for i_ is (lq, k,, kt). We must transform this

representation back into a rectangular form. If we are computing an image from angular

location (0,q0, then the rectangular form for k is just the usual vector sum of components.

Two cases occur. The first is for an "azimuth" or ¢ directed cross range direction where

(kr,k,) are transformed:

while for an "elevation" or e directed cross range direction the transform of (lq, ke) becomes

(4-12)

Lastly, the form for the windowing weight function W is unity at the array center and tapers

to zero at the array ends. A radial hat function may be used, [14], or a dual weight function

with a separate function for rows and columns may be used.
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Cross Range Direction Rotation: For two dimensional images one may choose the cross

range direction in either the 4_or e directions. The 4_cross range direction corresponds to

an azimuth rotation about the Z axis. This would be the typical case for an aircraft

geometry coordinate system in which the Z axis is vertical. The e cross range direction

corresponds to a polar anglo (elevation) rotation about an axis in the X-Y plane that is

perpendicular to the specified azimuth direction 4_.

Rotation Center:. The image is computed by varying the down and cross range values of i_.

Down range direction implies that the corresponding radial directionpo/nts toward the origin

of the coordinate system. This origin is then the center of the image window extent for the

resulting image. Often, however, the coordinate system for the body geometry has an origin

that is not necessarily where one wishes the center of the window extent. For example, most

aircraft coordinate systems define an origin at or near the vehicle nose. For imaging, one

would like to place the origin midway down the body so that the resulting image fills the

window extent. To accomplish this translation shift of coordinates, a user could change all

the vehicle coordinates in the geometry model file. A simpler approach is to introduce a

phase shift that corresponds to the desired coordinate translation.

The k space scattered field for the original or "old" bistatic scattered field radiation integral

is:

_" ": -JE'.R(k). f y(E')• ds
(4-13)

When a new reference origin, _ _,_, is defined relative to the previous body origin, then

the new image transform becomes:
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g_"(E')= e'_E'L/J(E')e'IE"_ (4-14)

Therefore a coordinate shift is implemented as a pha._ shift at each k space scattered field

valu¢ prior to Fourier transforming tho data. Wc do need to remember that the coordinate

rotation matrix then applies for a given viewing angle:

y. Lm(8) cos(a)j
(4-1s)

Example results for down and down / cross range arc shown in the czampl¢ results section.
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SECTION 6

NEAR FIELD COMPUTATIONS

The theory for computing near zone electric fields is presented. Near fields are computed

from body current distn'butions that result from a specified voltage vector excitation and

system impedance matrix. The theory applies for electric current sources and therefore

applies for boundary conditions corresponding to a perfect electric conductor or to resistive

surfaces. When compared to far zone fields, the near zone field computation requires the

addition of the scalar potential term to the formulation.

Near surface electric fields are of interest to understand the scattering process and to

evaluate E field magnitude, phase, and direction on or near a surface. Quantities involved

are the total field, the incident field, and the scattered field. The computation of surface

E fields is the first step in computing surface power flow.

Far field radiation is usually of interest and is computed by most all algorithms (including

MOM3D). The far field is directly proportional to the transverse components of the vector

potential and is used to compute radar cross section or antenna gain patterns.

The near field, in contrast, involves both the scalar and vector potential (conservative and

solenoidal sources). While the near field expression is perfectly valid for the far field, one

seldom goes to the trouble to compute the more complicated expression ff only the far field

is of interest.

Far field scattered radiation field lines are solenoidal, i.e., they close back on themselves

without ending on a charge source while near fields have both solenoidal and conservative

vector components. On a perfect electric conductor (PEC) surface the field lines originate

on the induced surface charges. Near a PEC surface the field is dominated by the scalar

rather than the vector potential and the field can be represented as a quasi static. As the

field point moves away from the surface, the vector potential term increases its contn_oution.
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In thefar field the radial field from thescalarpotential identically subtracts from the radial

vector potential component leaving only the transverse components of the vector potential

as the final contributor to the far field radiation.

Far field radiation usually involves the scattered field, i.e., that radiated by the surface

currents. Near field radiation, in contrast, must consider the total, incident, and scattered

fields, Et = Ei + W.

Boundary conditions for a perfect electric conductor (PEC) require zero tangential total

electric field, i.e., a PEC surface is a short circuit that does not support a tangential electric

field. Only a perpendicular field can exist at the surface of a PEC. E t is composed of the

incident field Ei and the field scattered by the body, E'. The physical process by which the

boundary condition is satisfied is by induced surface charge and current. The scattered field

caused by these sources, E', is equal in magnitude but opposite in direction to the incident

field Ei on the body surface (tangential component). The total tangential field is zero, Et,_

ffi [ Ei + E' ],_ ffi 0 and thus E',.. = - Ei,_.

Scattered Electric Fields: The fundamental theory for near zone scattered field is reviewed

and the expressions for incorporation into MOM3D are derived. A discussion of the various

field types and their physical meaning is then discussed.

Currents and charges induced on a scattering body radiate both electric and magnetic fields.

A far field EM wave is composed of transverse components of E and H whose magnitudes

are related by the impedance of free space, Z = E / H ffi [ _ / ¢.o]l,, . 377 - 120 _ Ohms.

In the far field, E and H are not independent quantities, we may compute either.

In the near field, E and H are not related and must be computed separately. In this work

we compute only the scattered electric field.

The time and frequency dependence of the fields have been assumed to be time harmonic

and monochromatic, ei*t.
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Electromagnetictheory tells us that the scattered electric field is composed of vector and

scalar potential terms for the solenoidal and conservative components of the vector field.

When dealing with PEC or RBC boundary conditions, only electric current and charges are

sources of the scattered field. In the more generalized case where magnetic currents and

charges are required, additional terms are needed.

The expression for the scattered field at spatial position rt is:

(6-I)

where j is the square root of -1, o is the radian frequency 2zf, A is the vector potential and

is the scalar potential with the gradient taken with respect to the field coordinates.

The vector potential A is an integral over the vector surface currents:

,T .. pof.Te_ (6-2)

where/_ is the permeability and J the surface current. The Green's function is

-.t_'._-r.)
"

4x IF:F. I
(6-3)

where k points in the direction of the scattered field and has magnitude of 2g/_., and the

vector R is from the source coordinate r, to the field coordinate rf, i.e., R points away from

the source point.
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The scalar potential has electric charge as its source:

1

• f ogdS (6-4)

where o is the electric surface charge density.

Surface current J and charge density o are not independent quantifies. They are related by

the requirement of charge continuity as expressed by:

v,-J = -j _ a (6-s)

where the surface divergence (derivative) is with respect to source coordinates. Thus we can

rewrite the expression for the scattered field entirely in terms of the surface current J:

(6-6)

where we have used krl = _p. and eE = k/_ where 11(=377) is the impedance of free space.

V_is a derivative operator on the field coordinates and slides through to g(r_,r,). The last

step is to use the relationship that Vf = -V, and that the gradient of the Green's function

on the source coordinates is expressed as:

(6-7)
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where the vector R ffi rf - r. is from the source to field point.

Finally, we combine the above to arrive at the expression for the scattered field:

= -jkn fry - (va-.7) (1 +jkR)(FI-F,)/(kR)2 ] g d8 (6-8)

This is our desired result which is a function of the surface current J. It is evident that this

expression involves additional computation when compared to that required for only the far

field. Once J is computed for a specific frequency and excitation the near zone electric field

is computed with this expression.

Scattered Field Expression for MOM3D: All that remains now is to express the current

vector J in the basis function representation used in the surface patch model of MOM3D.

The triangularcouple sub-domain basis function,expansion is:

N

.7 " _ j,_(O) (6-9)
i=1

where Ji is the complex current coefficient determined from the solution and f(p) is the

vector basis function:

Sq = +1 ; forit e A *

$7 = -1 ; for i' e A-

(6.]0)
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where p is the vector from the triangle vertex to any point in the triangle, _q is the length

of the qth edge, and Aq is the area of the qth triangle. This basis function has the property

that its magnitude is unity any time p lies on the edge t. The surface divergence of the

basis function has the form:

" _=+1
2

4)

Aq

(6-11)

We note that the vector p points from the vertex to the opposite edge of the basis triangle.

Current flows fromthe + triangle of the couple to the - triangle Coy definition). MOM3D

geometry defines p as pointing away from the vertex, despite whether the triangle is + or

-. Thus we introduce a unity sign term that is either + or - depending on which triangle

of the couple is being considered (or zero if the triangle edge does not have a common

neighbor).

Combining the above expression for J and V-J into the expression for scattered field, and

replacing the integral with a sum over couples, we obtain the expression used in MOM3D

to compute the scattered near field:

s , 1,, . P, ( 1 + }kR) _ ]g(p.p_) d.S (6-12)---1inE E 3--J,s,f[i- - <kR) i=! v-I 'i

where the first summation is over all the triangles and the second summation is over each

vertex. This sum is over all the current couples.
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The integral over the triangle isapproximatedusingthe centroid approximation (similar to

MOM3D matrix elements), i.e., the integrand is approximated by its value at the triangle

centroid:

1

where re is the centroid. Using centroid evaluation for the integrand yields the desired

expression for the scattered field:

(1 +/tRj ]
(6-14)

where IL ffi rf - r_ and r_ is the centroid of the source triangle.

Every Thing You Wanted to Know About Complex Vectors But Were Afraid to Ask: The

vector quantifies have components that are complex numbers. Each spatial vector

component has its own magnitude and phase. Each vector is understood to be multiplied

by the time dependence factor ei'_.

Real world physical quantifies, however, are not complex. Complex notation is the formal

process by which the time delay due to the finite speed of propagation is expressed by phase

(delay). The physical quantity is always understood to be the REAL part of the complex

number. For an arbitrary complex vector E with 0 "t time dependence, the physical value is

the REAL part:
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$

g_,_ - 8t(E_") _ _ IEilSt(el(*"'°)_, (6-1S)
ill

where ]_ ] and _i are the magnitude and phase of each vector component of E and the sum

is over the three vector components with unit direction ¢i. The physical vector quantity can

then be written in rectangular coordinates as:

(6-16)

where we have used the identity e _ = cos(x) + j sin(x) and where (x,y,z) are the standard

unit vectors for an orthogonal representation,

We see that this complex time harmonic vector changes direction in space as a function of

time. We could display this time dependent behavior by adding ¢_t time increments between

[0,2x] to create a dynamic moving display of the solution.

However we also can investigate the two principal directions of the vector by taking the

REAL or IMAG parts of the complex vector. To illustrate, we first set time to zero, _t =

0, obtaining:

_,._a _ t--o ° ) - I_lcos(4,, ÷o):e + I_,lcos(4,, ÷o)_ ÷ IEzlc_4,z ÷o)_

= OgEz .¢ + aEy 2P + aEz _. (6-17)
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while if we set time to - 90degrees,cot= -z/Z, we obtain:

E,_=.( r,_)t =-9o°)

(6-18)

The REAL and IMAG components of the vector E represent the two basis vectors

(magnitude and direction) that describe the time varying vector. The IMAG part lags the

REAL part by 90 degrees. A plot of REAL(E) and IMAG(E) will show two snapshots in

time of how the time varying vector behaveS. Every other point in time will be linear

combination of these two vectors.

We now review the idea of time average quantities. Sensors seldom measure actual time

variation, rather a time average value is "sensed." The scalar root mean square (RMS) time

average of a vector quantity is obtained by averaging the real components:

E_ = < _E e1")._(£ el-') • _12 (6-19)

where < > indicatesan average (integral)over ot ffi0 to 2,t dividedby 2,tand we have

taken the dot product of the two REAL vectors. Each component of the dot product has

a term that isproportionalto:
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181122= i_.1_
f ÷ - . E,E; (6-z0)
o 2 2

where * indicates the complex conjugate for each vector component i. Thus the RMS time

average of a complex vector is simply obtained as:

Em _ ,, ( _.E-" )_12 (6-21)

where we recognize that _/1/2 -" 0.707 is the root mean square (rms) average of a sinusoidal

varying quantity that has a unity peak value.

While the above discussion was for arbitrary complex vectors, we now review the specific

vectors required in this work. They are the incident field E i, the scattered field E; and the

total field E t.

The incident field is specified by a plane wave with polarization, wavelength, and direction

of propagation:

_ = _e., Eo e-jf.i (6-22)

where u is the polarization unit vector, k is the direction of propagation, and Eo is the scalar

amplitude. In MOM3D we take Eo = 377 which represents a unity value for the associated

magnetic field He. This is done so that the currents are then normalized to H0 for

comparison to Physical Optics values, 2nxH i.
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The scattered field E' is that due to currents on the scattering surfaces given by the

previously derived expressions.

The total field E t is the vector sum of the incident and scattered fields, E t = E i + E'.

Near the scattering body, we mostly are interested in the total field since that is what a

measurement probe (either dynamic or average) would measure. In the far field, a

measurement probe, e.g., a radar receiver, would still measure the total field, but since the

transmitted field has been turned off (and is in the opposite direction) when the scattered

energy arrives back from the target, the measured quantity is just the scattered field E'.

Formulation When the Field Point is Near Surface: When the field point for computing the

scattered field is within one triangle dimension of the surface, the centroid approximation

breaks down due to the 1/R and 1/R z singularities in the formulation. The physical field is

of course finit e being due chiefly to the surface perpendicular field from the surface charge

density 0. This section discusses the analytical approach used for computing the scattered

field when the field point is very near the surface.

Several approaches could be developed. One could better approximate the singular integral

with either a closed form analytical integration (if it could be derived!) or develop a surface

numerical integration scheme. But, since only those few field points very near the body

surface are affected by the singularity, it is not worth while to develop elaborate schemes to

"fix_ the problem. Thus the following approximation is used.

/

When the field point is on the surface with R = 0, the singular self patch field is its

perpendicular value. This same vector value is then used to approximate the near surface

self field as the field point moves away from the surface to a distance no greater than a

triangle dimension.

Electromagnetic theory and boundary conditions tell us that the surface parallel and

perpendicular fields are (for a general surface):
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2% 2

( P_cal 0o_ a._,tption )

(6-23)

where ( a, J ) and ( a', M ) are the local surface electric and magnetic charge density and

current. For our MOM3D analysis, we have only resistive and perfect electric conductor

boundary conditions, therefore equivalent magnetic sources do not exist, thus:

o ri and _' _O' = 0 (6-24)

We thus make the assumption that very near the surface, the fields are the same as on the

surface. We will approximate the self field with the above expression whenever R = Rf - r,

is less than approximately one linear triangle dimension and use the centroid approach

whenever R > d.

The self patch parallel field is zero. The perpendicular component is developed by

expressing the surface charge density in terms of the surface divergence of current:
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2% 2k

where V.J = -j o o , and caf. =k I rl
(6-_)

Dimensional Check : ohm =mpslm = volts
lira m meter

In MOM3D, the triangle couple basis functions result in the following expression for the

surface divergence:

v-Y,=+/' or z,
A: A:

(6-26)

The resulting expression for the i th self patch perpendicular field is thus:

= ±--7_.=j_
• 2kAl

(6-27)

This expression is used for evaluating near surface patch fields where the 1/R singularities

dominate. For field points further away, the previous approach using the centroid

approximation to the integral is used.

6-13



SECTION 7

MONOSTATIC and BISTATIC RADAR CROSS SECTION

Monostatic (backscatter) and bistatic radar cross section may be computed in MOM3D. The

body is excited via a plane wave from a specified direction in space, k_, and the resulting

body currents are computed. The far field radiation resulting from these currents is then

computed. For backscatter RCS, the scattered field is computed at the same angular

location as the source radiation. For bistatic RCS the scattered field is computed at angle

cuts specified by the user. The required theory for computing radar cross section is

presented.

Polarization Scattering Matrix: A complete electromagnetic scattering description is

contained in the polarization scattering matrix that relates the two poss_le transverse

incident field vectors to the two possible scattered field vectors. Only two components of

E are allowed since Maxwell's equations require that the E field be transverse to the

direction of propagation. The polarization scattering matrix relates the incident field vector

to the scattered field vector:

g-" ffi _' _ (7-1)

where S is a 2 by 2 dyadic (tensor) that relates the components of E _` to E_:

(7-2)
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The diagonal terms are the two independent co-polarized scattering elements while the off

diagonal terms are the two cross polarized scattering terms. The scattering matrix

completely represents the scattering properties of a target. The four terms of S are complex,

each with amplitude and phase. The elements of S are related to RCS:

(7-3)

E _0 and E '_ are independent functions of angle, thus the elements of S become functions

of the source and receiver angular coordinates,

- (7-4)

All poss_ole electromagnetic scattering information is contained in the polarization scattering

matrix. Huynen [15] and others have attempted to characterize (and therefore identify)

target properties such as size, orientation, symmetry, de-polarization, and characteristic

angles, etc. from the information contained in $.

MOM3D has the potential to compute the complete scattering matrix for both linear and

circular polarization.

Radar Cross Section Definition: We generally do not work directly with the polarization

scattering matrix $, we deal with the components of S as expressed by the co- and cross-

polarized radar cross section. Radar Cross Section (RCS) is a measure of the power

scattered by a target normalized to the power density incident on a target. Except for

incident and received polarization, RCS is defined to be independent of specific radar system

parameters such as transmitter power, receiver sensitivity, range to target, etc..
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The definition of RCS assumes an incident plane wave on the target (which physically does

not exist!). The scattered field is then computed or measured far from the target to avoid

near field effects. Radar cross section is formally defined as the far field scattered power

density normalized to the incident power density at the target:

o'.P = Tim 4zr: P_" ; P-E: or H=
p,_.p (7-5)

where a and [3 represent the polarization (e or ¢p) of the scattered and incident radiation.

RCS, while independent of specific radar system parameters, is a function of: target

geometry;, frequency ( or wavelength ); incident polarization; received polarization; and

the angular position of the source and receiver:

+

o"'P = o"'P(IPc",,_'c"'; e_,4# c) (7-6)

The power density for an electromagnetic wave is the sum of the E and H field components.

For plane waves the E and H fields are related via wave impedance. Thus wave power

density can be expressed entirely in terms of either E or H. Once the body currents are

obtained, RCS may be computed via either E or H since in the far field they are related by

11 = E / H. Typically we compute the scattered E field assuming E _" is unity. However, is

it of more interest to have _ = 1 so that wc may compare resulting currents to normalized

physical optics values, J = 2n x W =.

Radar cross sectioncomputation requires a scatteredfield,which in turn requires a body

current dism'bution as excited by an incident plane wave. The formal theory for the plane

wave voltage vector was presented in Section 2 and 3. Once a body impedance matrix has

been computed and LU decomposed (or the inverse found), body currents corresponding
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to the voltage vector are determined. The field radiated by these currents is computed using

the row measurement vector (Sections 2 & 3).

The voltage vector used to compute the body currents is a function of the angular

coordinates and polarization of the illumination source while the row measurement vector

is a function of the angular coordinates and polarization of the receiver:

._" = +R'(o.,,=,4e=,); PP = PP(o+,4, _) (7-7)

Radar cross section can then be defined in terms of the row measurement vector and body

currents:

k2 12,:,,,._,_ l,_-.fp (7+)
4x

where we have assumed E _ = +1 = 377. For the co-polarized case, a = 13= Oor _. The

current vector j is formally expressed as the inverse of the system impedance matrix times

the excitation voltage vector:

fp = [,_-.]-t pP (7-9)

Monostatic Case: Backscatter RCS is computed by evaluating the row measurement vector

at the angular location of the plane wave source illumination. Our Galerkin weight function

approach yields the same computation form for the voltage and row measurement vectors.

Thus the backscatter row vector is equal to the voltage excitation vector used to compute

7.4



the body currents, R'(0'_,4_ '_) = V'(0m,_i_). Therefore the backscatter RCS subroutine

does not need to compute the R row vector for the co-polarized case.

Bistatic Case: Bistatic RCS is the case where one is interested in the scattered radiation at

angular locations that are not the same as the illumination source. Bistatic RCS requires

specification for both illumination and receiver angles. Two cases arise:

1) The illumination angle is fixed relative to the body while the receiver location is

moved (angle "cut'); and

2) The illumination source and receiver are fixed relative to each other while the

body is rotated.

In case 1) only one set of currents is computed for the body and the bistatic RCS is

computed by re-evaluating the row measurement vector for each receiver angle of interest.

This is the most common "analytical" case and is implemented in MOM3D.

In case 2) the body currents must be computed for each new illumination angle. For this

case, a new voltage and row measurement vector must be .computed for each angle and V

is no longer equal to R. This is the most connnon "experimental" case and corresponds to

rotating a target with fixed illumination and receiver angular locations (with constant angle

between). This case is not presently implemented.

In each case the row measurement vector must be computed at the new receiver angle. This

is done in MOM3D using the subroutine that computes the voltage vector V.
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SECTION8

CURRENTCOMPUTATION

In efforts to understand the radiation and scattering mechanisms it is often desirable to

display the current distribution on the body as caused by either in incident plane wave (as,

in a scattering case) or by local surface "port" excitation (as in an antenna problem). This

section discusses a few of the issues required to compute the currents, spatial and temporal

average values, and the two independent time values. Current "modes" of interest might be

those corresponding to: physical optics; surface traveling waves; creeping waves; edge waves;

leading edge diffraction; trailing edge diffraction; and multiple bounce.

Once the body impedance matrix is computed and solved and the voltage vector specified

(either as an incident plane wave or as "port" excitation), the unknown current vector j is

formally computed as:

j'+ = [£]-' 9p (8-1)

The complex vector body currents are then given by the surface basis function expansion:

= E J,+l, : J; + Z,,-)l-I l.l [,4 i

Couple Spatial Averaged Current: The basis functions are functions of position p within

each triangle. The triangle hat basis functions can be averaged over the couple (two

triangles) as suggested by the results of Section 2. On a couple basis, the current average

is givenby:
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A;*A;
(8-3)

where r_ is the centroid location of the + and - triangles of each couple. This is the

quantity that should be considered as representing the surface currents. The location of this

averaged vector can be taken to be either end of the vector, i.e., triangle centroids, or the

midpoint location, 0.5 * ( pC. + p_- ). If the two triangles making up the couple are not

co-planar, the midpoint is not in the plane of either triangle.

Triangle Currents: The number of

triangles making up the geometry is not

equal to the number of current couples.

Often for ease of display it is convenient to

show currents at the centroid of each

triangle. This can be done simply by

performing a vector sum of the current

couples associated with each triangle,

Figure 8-1. This sum is over one, two, or

three couples depending the number of

common neighbor edges. Edge triangles

Figure 8-1 Triangle current can be
considered as the sum of couple currents

have one free side ( two couples ) while a tip triangle has two free sides ( 1 couple ). The

triangle spatial average complex vector current is thus:

I,Zot$

E JF <s-4)
q=l

where Jq'_ is computed from the previous expression.
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TimeVarying Vectorsand SurfaceCurrent Animation: Surfacecurrentsare time varying

vectors. The physicalquantity is obtained by taking the real part after multiplying by the

time phasor c_. At each couple location thc current vector sweeps out a trajectory on the

surface as ot varies between 0 and 2s. Two principal vector directions (basis vectors) from

which all other values can be represented are the vcctors at _t = 0 and ot = -z/2. These
t

two vectors arc the REAL and IMAG parts of J:

J',-(,.t-o) - stY: -
(8-5)

The surface current vector as a function of time is a linear combination of the real and imag

basis vectors:

Y,(,_ t) - cos(_t) Y,_ - sin(_t) J'NM (8-6)

A dynamic graphical display of currents would simply vary ot over [0,2z]. One could display

the dynamic vectors with magnitudc shown as relative vector length or color. Or one could

display the magnitude using a color scale without showing the vector direction. These

displays would represent the dynamic currents induced on the body due either to an incident

plane wave ( as for RCS problems ) or to local surface port excitation (as for antenna

problems ). For plane wave excitation one also could display the incident wave (forcing

function) as it passes over the geometry.

Time Average Currents: Besides a spatial average, there is also a time average to consider.

The time average is a stationary scalar quantity (not a vector) obtained by averaging the



REAL part of { J 0 "t } over the interval [0,2z]. The root mean square (RMS) time average

is computed in the same manner as discussed in Section 6 for near fields:

f.j_'"" = (J'J')_ (&7)

This stationary scalar quantity could be graphically displayed using a color magnitude scale

for either the couple currents or the triangle based currents.
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SECTION 9

ANTENNA FORMULATION

MOM3D can be used to compute antenna gain patterns. Since the impedance matrix

represents the electrical interaction of the body with itself, independent of the excitation

voltage vector, we can use a voltage vector corresponding to a local surface "port" excitation

to excite body currents. Radiation from these currents is the antenna pattern. This section

will discuss the voltage vector, antenna gain, radiated power density, power input, and input

impedance.

Geometries operated as antennas have voltage forcing functions that are local. These can

take the form of a coax feed from a transmitter or simply an open ended waveguide

terminated on the surface over which there is an E field. The antenna problem does not

depend on the nature of the transmitter, it depends on how the structure is excited: voltage

magnitude, ph_e, and vector direction. This excitation induces currents on the body

according to Maxwell's equations and boundary conditions.

Voltage Vector:. For the antenna problem, the local surface voltage excitation occurs at any

one of the surface couple basis functions. Each excited location is called a "port." For most

antenna problems only one port is excited. But there may be multiple excitation ports on

a body, each with its own magnitude, phase, and direction, The voltage vector forcing

function takes a simple form:

0
0

v,
I_ = 0 (9-1)
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Eachexcitedport elementof V is computedasbeforewith W = f:

V_ I <_,E">

- r.£- (f as*÷ f ds-)

. (I".A_,'.') :,

= Vim 1, volt-meter

(9-2)

where we have assumed the applied port electric field E" is constant over the couple (two

triangles), the expression for t" has been used, and Ar "_ is the vector from the + to -

triangle centroid. In MOM3D we take E to be in the same direction as ar so that the

applied voltage across the couple V,a is:

( _La'd] _ E'Ar (9-3)
VIWqlII gl

J

In MOM3D We input the value of Vi directly so that the terminal voltage is expressed as:

V,,,. = Vl (9-4)

Once Vi has been input for one or more excited ports, the body. currents are computed in

the normal manner:

•- [_]-,1 " V (9-5)
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The far field radiation at specified angular direction and polarization a = 0 or 6 is

computed in the usual fashion in terms of the row measurement vector for the desired

polarization:

• -jt_

e'-.'(o,4,) -- -J_n 4-_ [ R'(o,4,) •f ]
(9-6)

Antenna Gain: The antenna pattern or gain is computed in terms of the far field radiation

power density normalized to the input power to the antenna (assuming the input power is

radiated isotropiclly and that we have unity efficiency):

¢,(0,_) : Pr_(e"l') : 4,,X 2 P"(e,4,)

(e,._)_ p,w

(9-7)

where P _ has units of watts while P r,d has units of power density, watts/meter 2, i.e., is the

Poynting vector of the far field radiation. The astute reader will notice the similarity of this

definition to that for radar cross section.

In the far field where E / H = _ = 377, the power density is the REAL part of the Poynting

vector:

pr_ = 0.58t(gx/_*) -- [g_t.,]2 (9-8)
211

where * represents the complex conjugate and the factor of 1/2 results from using the root

mean square value for the field quantifies.

9-3



The power input to the antennais the sumof input powers (real part) of all the excited

ports:

room

pW - 0.5 _ fft(V_ml_) (9-9)
_emr-I

• The current at each port is the computed current density j (amps/meter) times the common

edge length:

I.,.. - j, (9-1o)

The terminal voltage was previously given in terms of the port voltage vector so that the

input power to the antenna is computed in terms of the input voltage port value Vi and

resulting current coefficient ji:

p_w . 0.5 '_ _I(V iff) (9-11)
/_pmr - !

The final expression for antenna gain relative to isotropic is then

G'(0,,) - k2'rl IR"fl2 (9-12)
8_ pe_,f

This is the antenna pattern for polarization a = O or ¢p. When expressed in dec_els it is

known as dBi, i.e., dB relative to isotropic. A half wave dipole has a figure eight gain

pattern with broadside maximum of approximately 2.1 dBi.
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Input Impedance and Admittance:. Another quantity that is often of interest is the input

impedance of the antenna at each excited port. This is obtained directly from the definition

as the ratio of port voltage to current:

v... v,
Zt_- Ira= jjl_ (9-13)

Z has both amplitude and phase. The real part is the radiation resistance while the

imaginary part represents energy storage, either capacitive or inductive (current lagging or

leading). A half wave dipole at resonance has an approximate input impedance of 72 ohms.

At resonance, Z is often completely real, i.e., zero degrees phase.

The input admittance is just the reciprocal of input impedance:

y.,.: (9-14)
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SECTION10

RESISTIVEBOUNDARYCONDITIONS

ResistiveBoundaryConditions(RBC) havebeenimplementedin MOM3D. This section

describesthe ohmsper squareconceptfor thin resistive materials arid its extension to the

more general case of thin dielectric material. Resistive Boundary Condition (RBC) is then

presented followed by the more involved theory for Impedance Boundary Conditions (IBC)

and the approximate IBC case. This is shown to be the same as the RBC case, therefore

the present RBC MOM3D can be used where the approximate IBC hold.

Resistive Sheet Concepts: Resistive Boundary Conditions (RBC) are typically used to model

thin sheets whose impedance does not change with angle of incidence. Such sheets typically

are thin resistive layers, usually frequency independent, or thin dielectric layers (which are

frequency dependent). Thin layers are characterized by a complex sheet impedance known

as Ohms per Square (OPS) that has magnitude and phase, i.e., characterized by energy

dissipation and reactive storage.

Ohms per square characterization of thin resistive layers is derived directly from bulk

material resistivity characterizations when the thickness _ is allowed to become a thin layer.

The resistance of many materials is characterized by resistivity p ohm-meters or by its

inverse, conductivity o ffi l/p, whose SI units are Siemens per meter, S/m, or mhos/m (mhos

= 1/ohms).

The OPS concept is derived by considering a rectangular block of resistive material. The

resistance between parallel faces of the block, P-tu, increases with spacing t, and decreases

with area A, Figure 10-1,:
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where _ is material thickness and w is

width.

When thickness _ becomes small, as for a

thin sheet, then the resistance between

terminals is expressed in terms of

W

R(ops)- 1/(ot)

R

unn - p l/Area

- p_/(_w)

Figure10.1 Ohms per square concept

l 0o-2)

where R_ has the definition

Ra/o = (0_)-1 (10-3)

R_ then becomes the electrical characterization of the material rather than specifying

conductivity o and thickness _. The resistance Rm. between sheet ends becomes, Figure

10-2,

t 00.4)
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If one measuredI_ between the ends of !

a square sheet, where I = w, then I_= =

I_ therefore the name Ohms per Square.
W

Wlule we generally are interested in the

values of I_ at microwave frequencies,

experience has shown that conductivity is

usually frequency insensitive, therefore a

DC measurement of R_ is representative

even at microwave frequencies. Typical

values range from 0 (conducting surface) to

several thousand ohms per square. A unique value is q/2 -

Physical Optics currents are 1/2 that on a PEC surface.

Rtwrn - R(ops)_lw

Figure 10-2 Ohms per square (OPS)

377/2 = 188.5 ops where

Dielectric Thin Sheet Impedance Concepts: The generalization of thin resistive sheets, i.e.,

sheets characterized only by dissipation characteristics can be extended to thin sheets that

also may have energy storage characteristics, such as thin dielectric material, e.g., fiberglass

sheets. The concept of thin means that the electrical thickness is small compared to a free

space wavelength:

_d • ko (10-$)

When this holds, the dielectric polarization currents perpendicular to the sheet direction are

very small compared to the "in plane" currents. In plane energy storage and dissipation can

then be characterized as ohms per square that is complex, i.e., amplitude and phase.

A general thin sheet expression is given by [16]:
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= -/6o 
_1o = k(e, = 1) • (e, - 1)

(10-6)

where _ is the impedance of free space, (/zo/ee) _', - 120x .. 377 ohms, k is the wave number

2x/)., 3. is the wavelength, and e, = e' - ja" is the relative dielectric constant. The loss part

of e, is E" and when conductivity is the principal loss mechanism, which is the case for most

materials of interest, it is

E# _- o (10-7)

where ¢o is the radian frequency, a the material conductivity, and eo is the permittivity of free

space. When e" dominates the relative dielectric constant, as it does for resistive materials,

then the thin dielectric sheet impedance reduces to the resistive sheet expression (using ¢Oeo

k/_),

-/'I = (a=)'1_t

(10-8)

Thin dielectric layers, at high frequencies, can have low impedances. This must be

considered when backing thin R card material with dielectric support surfaces such as

fiberglass ( R_ - 600 ops at 10 GI-h for e,=4, and _ = 0.040").

Resistive Boundary Conditions: In the original MOM3D code, perfect electric conductor

(PEC) boundary conditions were imposed, i.e., the total tangential electric field was set to

zero,
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e._" * [E _ + E-" 1,- " o (1o=9)

where E _ is the incident electric field and E' is the field scattered by the body. E scattered

is an integral over the surface currents and is written in operator form as E" = - L(J). The

PEC boundary conditions then take the form

-_ = L(3') ffi _ (10.10)

A solution is obtained by taking the inner product with a set of weight functions and

expanding the current density J with a sot of sub-wavelength basis functions. A matrix

equation results for unknown current coefficients with the incident wave voltage vector being

the solution forcing function. --

Resistive Boundary Conditions for thin materials follows Ohms law, namely that the total

tangential electric field is equal to the current density J times the resistance R,

E._= = (E._+ ,_"'],_ = ral,.).7 (10.11)

RBC boundary conditions for the EFIE take the form

[=g_ + Role.I], - = [/,(j_ + ralay]. = _ (10-12)
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As with the PEC approach, a solution is obtained by taking the inner product of each side

with a surface vector weight function W,

-_,,L(_.)>+._,, X.1,> - -_,,E'> (10-13)

We see that the RBC differs from the PEC only by the term _ = < W, R J > that is

added to the diagonal elements of the PEC body impedance matrix.

The explicit expression for 7__ is obtained by using the triangle couple expansion functions

defined in Section 3. The Galerkin weight functions require W ffi f. We then use f_ to

compute 7__:

z.,... <17',x_T>

,A;+A; A;+A; j
ohm-m2

(10-14)

where R_ is the average of the value assigned to the + and - triangles of the couple.

Impedance Boundary Condition Theory: This section outlines the more general Impedance

Boundary Condition (IBC) and its appro_mate form that reduces to the RBC.

Interest in the IBC is for application to perfectly conducting surfaces coated with a thin layer

of magnetic (mag) radar absorbing material (RAM). Mag RAM differs from thin resistive

layers in that performance is due to phasor cancellation as well as energy dissipation. A mag

RAM coated plate is a Dallenbach layer, Figure 10-3.
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IBC apt _ only for high _ of refraction

materials where the path length inside the

materid is always normal to the surfac_

When this occurs, the path length does not

change with incidence angle, Figure 10-3.

In the most general case, Maxwells'

equations must be solved for both electric

and magnetic currents, J and M. The

standard definitions for these currents are

O_ Notm_ m.

on Zadomo m0o md
m

I_mal incidmca, path

_rm._ °_°n

Figure 10-3 Dallenbach layer

in terms of tangential surface magnetic field H and electric field E,

Oo-ls)

where n is the local surface normal. For PEC surfaces there are no magnetic currents since

ET°tt_ = 0. For general impedance surfaces both H and E tangential fields can exist and we

must solve for each.

Maxwells' equations in the Stratton Chu integral form for closed surfaces express the

scattered E' and IP fields in terms of .l and M source currents. The EFIE takes the form

[7]:

(10-16)

where g is the Green's function, exp(-jk-R) / ( 4,tR ). The corresponding MFIE is [7]:
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H'-- " f [-J_Ms + Y×Vg + (_'g)vg] ,_ (1o-17)

It is customary [17] to express the boundary conditions in terms of L and K integral

operators:

ET" = E_ - L(Y) + E(_) and
(10-18)

where % ffi 377. The operators L and K have the definition [17]:

(w-_/]
(10-19)

where X is either J or M.

From this general formulation, we see that an arbitrary impedance surface requires solving

for magnetic and electric currents.

When one assumes that the surface impedance does not change with viewing angle, i.e., that

the index of refraction is n >> 1 such that phasor cancellation path lengths do not depend

on look angle, then one can apply the impedance boundary condition.
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The impedance boundary condition relates the magnetic current M to electric current J via

the surface impedance Z_

. z,Y 0o-2o)

which implies that [17]

When IBC condiaons apply, it reduces the unknowns from both J and M to only J. This is a

very significant reduction in the complexity of the analysis and compuier algorithm.

As indicated in [17], the 1BC approach leads to physically correct solutions at interfaces

where the refractive index of the surface layer is much greater than unity, n = (e#,)", >>

1, and where the surface impedance can be expressed in terms of the surface material _, a,

and thickness.

Surface impedance is constant with viewing angle if and only if the index of refraction is

much greater than unity, n >> 1(see Figure 10-3). When this is the case, specular energy

incident on the layer travels perpendicular to the surface when inside the material layer.

Using the IBC to eliminate the magnetic current M, reference [17] obtains:
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- xR =  aSl_÷z=r(, xa l_

- +

(10-22)

i

Reference [17] solved this equation for Bodies of Revolution (BOR's) by computing the L0

and K0 operators for the BOR coordinate system and Fourier modal basis functions.

A similar approach could be done for the MOM3D code coordinate system and basis

functions if we computed the K operator in addition to the L operator matrix elements

presently computed. Such a solution is clearly a large undertaking and is beyond the scope

of the present effort. Several concerns, however, are the requirements for closed surfaces

required for the MFIE and the vector representation of n x J for the triangular patch basis

vectors.

Approximate Impedance Boundary Condition Theory: If we require that Z, < < 377 and if

we approximate the K operator (which is a Fredholm integral equation of the second kind)

to just its self term, then we can obtain the approximate IBC equation that has the same

form as the RBC case. The K(X) operator is approximated as:

PV

(10-23)

This approximation is the tangent plane approximation, valid for surfaces whose radii of

curvature are large compared to 7., or is valid for planar surfaces away from edges. This is

identical with the Physical Optics approximation where the surface field is due only to local

sources and does not have contn'butions from other surface regions. When this

approximation is made with the requirement that Z, << qo = 377, the approximate IBC

equation is obtained
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L(3_ + ZaJ' ,, F_ (10=:74)

This is the same form as the RBC. Thus the approximate IBC is the same as the RBC that has

been implemented in MOM3D.

Summary: The resistive boundary condition expressions have been derived. The RBC can

be applied to thin resistive or dielectric sheets whose surface impedance is not a function

of illumination angle or polarization.

Impedance boundary conditions were reviewed. The material coating requirement to apply

the IBC is that the index of refi'action in the coating be n >> 1 so that the surface

impedance is not a function of illumination angle.

An approximate form of IBC was developed that required that the surface impedance be

Z.,_ << 377. For this case, the approximate IBC formulation is the same as the RBC

formulation.
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SECTION 11

SYSTEM MATRIX SOLUTION

The motivation for this section is to remind ourselves of matrix solution considerations that

are a fundamental requirement for method of moments solutions. Topics discussed are the

system matrix, its dependence on linear body size, factors leading to matrix ill conditioning,

and a discussion of the matrix condition number.

System Matrix: The impedance matrix represents the electrical interaction of the body with

itself at the specified frequency (wavelength) according to Maxwelrs equations and boundary

conditions. All electromagnetic interactions are accounted for:. physical optics (specular,

i.e., angle of incidence ffi angle of reflection and end region), leading and trailing edge

diffraction, shadowing of one surface by another, surface traveling, creeping, and edge wave

phenomenon, multiple bounce(s), etc..

The system matrix is a powerful representation of the EM body response since it is

independent of the nature of body excitation. Once the matrix is computed and solved via LU

decomposition or inverse, we then obtain surface currents for any type of excitation, e.g.,

RCS scattering or antenna gain patterns. RCS scattering problems can specify polarization

and angle of illumination for plane waves, or for spherical or even cylindrical waves provided

one uses the corresponding voltage vector. Or the same matrix can be used to obtain

antenna patterns with one or more localized regions of the body excited, each with user

specified amplitude and phase. Once the system matrix is computed and solved, we can save

the matrix for re-use for any type of EM problem.

The method of moments approach with excitation independence is contrasted to the

differential equation approach to solving EM problems such as the Finite Difference Time

Domain (FDTD) method. The FDTD, while in principle solves for all frequencies at once

if an impulse excitation is applied, must be re-solved for each ewimtion. Thus to obtain an

RCS backscatter plot at 1 degree increments, 360 new and different FDTD solutions must



be computed. This is in sharp contrast to the MOM approach where one does not compute

a new Z but only a new voltage vector and currents.

The limitation of any MOM code, however, is the memory storage required for the matrix

elements and the solution time to solve. The number of unknowns for 3-1:) surface problems

is proportional to linear body size squared (L" - area). Memory requirements vary as the

fourth power of body size, l_ ,, L _, while solution time increase as the sixth power of body

size, N 3 ,_ L _.

We have been able to increase body size as computer resource capabilities have grown. The

L6increase in CPU time implies that for every factor of ten increase in computer speed, the

corresponding body size capability grows by 47 percent ( 10 TM = 1.47 ). Similarly, every

factor of 10 increase in memory increases body size by 78 percent (10 v' = 1.78). Continued

growth of serial computer architecture will not translate into appreciable growth in body

size. For present architecture one must wring out all poss_le efficiencies such has been

done in MOM3D by using matrix and body symmetries to reduce memory and CPU times.

Significant increases in body size will most likely require parallel computer architecture with

vastly improved throughput, or we will need a revised formulation of the problem to reduce

significantly the number of unknowns.

MOM3D has treated the actual matrix solution as a black box operation by using the

LINPAK l_rary of matrix algorithms [9]. Other l_raries are available and a motivated user

should feel free to implement.

The practicality issues and virtues of LINPAK are:

Routines for matrices that are complex;

Routines for symmetric matrices with reduction in run time and storage;
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Routines that compute the matrix condition number to check the "quality" of

the solution;

Routines written in FORTRAN transportable code without common blocks

(data is passed via subroutine arguments);

Routines which build on the optimized low level Basic Linear Algebra

Subroutines (the BLAS) as fundamental building blocks; and

* LINPAK is in the public domain.

Matrix Condition Number:. The concept of matrix inverse implies that the matrix is not

singular, i.e., the matrix determinant is non zero. Matrix singularity implies that the set of

equations is not linearly independent. The method of moments matrix formulation arises

by expanding the unknown currents with a set of N basis functions with unknown

coefficients. The boundary conditions are then applied to N independent locations on the

body. The solution of this coupled set of equations is then obtained. Except for internal

resonances, the matrix is never singular (in theory). While the matrix determinant may never

be identically zero, it may be numerically small enough to cause unstable solutions. Thus

it almost becomes mandatory to obtain a quality check of the solution. This can be done

by choosing LINPAK routines that compute the matrix condition number (which typically

requires a 10% overhead in computation time). :

Factorswhich can leadto numericallysingularmatricesare:

Too many samples per wavelength such that the body becomes over sampled

with each resulting equation becoming less unique (independent). This can

occur when one tries to sample geometry variations on a finer scale than M10.

Electrically small bodies suffer from this effect;,



Interior body resonancesthat occur at specific frequencies. This can be

overcomeby usinga combinedfield formulation but at the expense of more

complexity with many additional unknowns. Since this effect is always

narrowed banded in frequency, it makes more sense just to be alert to this

poss_ility and not to attempt computation near these few frequency locations.

The number of unknowns is large and the precision of the computer

arithmetic insufficient;,

The matrix condition number g is a measure of the sensitivity of the solution to errors in

the matrix and/or the right hand side forcing function. The following discussion is adapted

from the LINPAK Users' Guide [9] with the notation changed to that of our MOM code

problem. The general MOM matrix equation and solution is:

J .= ¢ ; i = (11-1)

Errors in the matrix Z due to numerical round off or formulation and/or in voltage vector

V of magnitude c

AZ AV
c = m or -- (11.2)

Z V

may lead to poss_le relative error in the current solution J of

A./ g E (11-3)
,/
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The LINTAK routine for obtaining the LU decomposition of the complex symmetric

matrices is CSPCO. This routine computes a parameter RCOND that is an estimate of the

reciprocal Of the matrix condition number, 1/x. If RCOND is approximately 10 _ then the

elements of J can usually be expected to have d fewer significant figures of accuracy than

the elements of Z. If RCOND is so small that in floating point arithmetic it is neglig_%le

compared to 1.0, then J may have no significant figures. On most computers this condition

may be tested by the logical expression

[ (1.0 + RCOND).EQ. 1.0 ]

When this expression is true, the matrix is considered to be "singular to working precision."

As a special case, if exact singularity is detected, RCOND may be set to 0.0, Reference [9].

MOM3D computes the condition number as x = COND - 1 / ( RCOND + 10 "3° ). Low

values of COND suggests a reasonable non singular solution while a value of 10 ÷3° shows

a useless singular solution. While we do not have definitive threshold values for poor

solutions, if COND is large and the resulting current solution looks suspicious, then the

solution most likely is not correct. If the computer has 6 digits of precision, and COND is

greater than 10 _, i.e., RCOND < 10 "6, then the solution for .] may not have any significant

figures.

Matrix solution algorithms usually produce a result. It is up to the user to figure out if the

result is garbage or is a good solution.
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SECTION 12

MODELING ISSUES

The objective of this section is to introduce several modeling related issues inherent when

using the triangle basis functions introduced by [1], particularly the ZIG-ZAG nature of the

basis function representation and lack of symmetry.

The method of moments approach to modeling electromagnetic current behavior requires

two critical steps. First one must choose basis functions that can adequately represent

currents and charges on the geometry for the specified excitation. Second, the analyst must

develop an algorithm that adequately models the body-body interactions using the chosen

basis function representation. If either of these steps are not adequate, then the

computation model will not produce physically correct results. The quest for correct results

however, often times leads to inordinate computation complexity and/or computer resources.

Thus We need to decide when our modeling process is good enough to answer the questions

we pose.

Balance in the modeling processes is required. The basis function choice and sample density

is inherently an approximation to the surface currents. Since we need both adequate basis

function representation and an EM prescription, we cannot make up for poor basis function

choice and density by developing a precise EM prescription. Still, sometimes a higher

density of basis functions can compensate for a poor EM prescription.

Surface Current Characteristics: Surface current spatial variation inherently is scaled to the

free space wave length. It is vector in nature, i.e, has directional characteristics. The spatial

variation k sets the sampling requirements necessary to model a continuum with a set of

discrete basis functions. Typically we choose 7 to 10 samples per k as sufficient to model

this spatial change, i.e., 98 to 200 .samples per k z of surface area (2 basis vectors required

for surface). But sometimes the geometry or electrical characteristics change faster than
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the wave length scale and we model this behavior. Current variation near edges, depending

on the voltage vector forcing function, may have a square root singularity in its behavior.

Current vector direction depends strongly on excitation, i.e., current flows in the direction

of the applied electric field. Yet, structure also influences direction. For example, edge

diffraction behavior usually involves currents either parallel or perpendicular to the edge.

Surface wave reflection (traveling and edge wave) and how we model the edge or tip can

influence the current direction and magnitude. Edge wave currents are coupled strongly to

the edge and "reflect" from the tip. Thus a vector basis function representation that is

completely general to allow for any type of surface current flow for any poss_le excitation

function must allow for many directional poss_ilities.

Triangle Basis Function Considerations: The surface triangle couple basis functions

introduced by [1] and used in MOM3D have certain desirable characteristics. The triangle

nature allows for modeling doubly curved surfaces in a smoother fashion than rectangular

or square patches. They model currents in a piece-wise linear manner and charge density

in a pulse doublet manner. They do not introduce extraneous line charges since the current

from one triangle must flow completely to the second.

The fundamental vector direction of these

basis functions is from the centroid of one

triangle to the centroid of the adjacent

triangle forming the couple. This/eads to a

ZIG ZAG represemation of current direction

on a body. Consider the plate geometry

shown in figure 12-1 modeled with triangle

couples. The triangles are shown with

dashed lines while the current basis

functions are shown in solid arrows from

centroid to centroid. We see the inherent
Figure 12-1 Basis function currents are from

triangle centroid to centroid (zig-zag)
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change of vector direction from one couple to the next, interior to the plate and along its

edges.

Also note that the basis function direction on each comer tip is different for adjacent

comers and is a function of body symmetry. Referring to Figure 12-2, the plate with no

symmetry has all corner couple directions parallel which makes the basis function direction

parallel or perpendicular to the diagonal for adjacent tips. For the plate with symmetry the

basis function vector directions are no longer all parallel and is different for each pair of

tips. The symmetr/c p/ate has a ba,ds funct/on _n that/s not symmetr/c.

The ZIG ZAG nature of the triangle couple basis functions will change if one invokes model

symmetry. Figure 12-2 shows a typical triangle modeling scheme with and without symmetry.

Note that the corner tip couple vector direction is different for each of these plates.

This ZIG ZAG nature of the vector direction is inherent in the triangle basis functions

introduced by [1].

i".....P... P.._

IImmmIImm__J_Imm,I!mm_Im,

No b'ymm_m/

I "" ' IS°oi_'ol:

IllIIgI Illll I

iii fill illlll I

I,,'_--"'_'--" '-"",,Y"'",,!
mror b"_mo_

Figure 12-2 Geometry symmetry alters basis vector orientation
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Physical currents do not have this ZIG ZAG characteristic. Triangle couple representation

of physical surface currents introduces a mode.ling ar_act. The consequence of the ZIG-ZAG

representation is usually minor, yet, on occasion it will introduce minor asymmetric results

in radiation patterns. This often times is seen in edge wave scattering from a square plate

where the computed results do not have complete symmetry as one would expect. This is

due to the tip basis functions not being the same direction on all four comers.
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SECTION 13

EXAMPLE RESULTS

This section presents sample MOM3D results for backscatter RCS, bistatic RCS, current

distributions, downrange images, down/cross range images, near zone field maps, and

antenna gain patterns. These results were computed on a personal computer with a 486

processor operating at 33 MHz.

Coordinate System: The coordinate system is the standard spherical system with the

azimuth angle 9 measured from the X axis and the elevation angle measured up from the

X-Y plane, Figure 13-1. The polar angle 0 is the 90 ° complement of elevation and is

measured down from the Z axis. The two

fundamental polarization unit vectors are

u 6 and u" that are in the "direction" of the

corresponding angle 0 and 9. The xyz

rectangular representation of these vectors

become functions of (0,9).

Model Geometry: The model geometry was

a 5.5 inch square plate at a frequency of 3

GHz. The side length and area were 1.4 7.

and 1.95 k 2 respectively. The plate was

centered in the X-Y plane and was

°/

Figure 13-1 MOM3D coordinate system is

the standard spherical system

modeled with 200 triangles with mirror symmetry about the Y axis, Figure 13-2. This

resulted in 280 unknown current couples. The symmetric geometry resulted in an "even"

matrix rank of 145 and an odd matrix rank of 135. There were 10 current couples on the

spine. The normalized sample density was 143 current couples per square wavelength, which

is over-sampled. The plate was a perfect conductor.
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Figure 13-2 PLT-SS.GEO Mesh Model, Symmetric about Y = 0 (X-Z) plane.

Backscatter RCS: The backscatter RCS is shown in Figure 13-3. An elevation cut is shown

for both e (solid line) and _p (dashed line) polarizations. We see that the RCS is the same

for both polarizations when perpendicular to the plate, i.e., the "specular flash" where the

angle of reflection is equal to the angle of incidence. This flash has a value of -4 dBsm that

compares to the high frequency physical optics value of %0 = 4= A 2 / _.2 = -3.2 dBsm. Thus

even for this electrically small plate we obtain optics results for the specular return. For e

polarization at 0 ° incidence the electric field is perpendicular to the plate so that no currents

are induced (no tangential E field), and therefore no scattered electric field.

The e polarization lobe at 40" is the surface traveling wave (TW) lobe. The location

compares well to the hip pocket standard location given by e = 49 ( ;. / L )04 = 41 o. The

TW magnitude is -14 dBsm, which compares to the hip pocket estimate that the TW return

bc less than 3). 2 = -15 dBsm.
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Figure 13-3 Backscatter RCS

For 9 polarization at 0 °, the RCS is due to edge currents, - 22 dBsm, which corresponds to

the standard edge optical return of o,_ = L z / x =-22 dBsm.

The azimuth cut, Figure 13-3(b), is for 9 polarization and is typically called the edge wave

cut since the RCS is dominated by specular edges and edge traveling waves. The edge

specular is the same as the previous edge value, -22 dBsm. The edge traveling wave here

is not particularly dominant. The slight asymmetry in this result is due to the ZIG-ZAG

basis function representation and the effect of model symmetry that causes asymmetric basis

functions(see Section 12).

Bistatic RCS: Bistatic RCS is shown in Figure 13-4 for e and 9 polarizations (solid and

dashed lines respectively) for an elevation cut. In (a) the plate is illuminated at 90 °. The

backscatter RCS at 90 ° is -4 dBsm. This is the optics specular flash and corresponds to %0

ffi -3 dBsm. The forward scattered field at 270 ° has the same amplitude as the backscatter

value. This forward scattered field, when added to the incident field (in a vector phasor
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(a) 90 deg inddence CO)45 clegincidence

Figure 13-4 Bistatic RCS

manor) forms the shadow behind the plate. At edge viewing angles of 0° and 180° there is

no scattered field for 0 polarization (perpendicular to plate) but there is a finite _ppolarized

scattered field due to edge induced currents.

The bistatic result for 45 ° incidence is shown in Co). The specular flash here, where angle

of refection is equal to angle of incidence, is at 135°. The specular value is -7 dBsm and

compares to the physical optics value of %, ffi cos'_ 4_ A 2 / kz ffi -6 dBsm that is down by

3 dB over the 90° specular result due to the cosa(45 °) ffi 0.5 factor. The forward scatter lobe

at 225 °, (ffi 45 ° + 180°), forms the shadow behind the plate when added to the incident field.

For edge viewing angles, as before, there is a q_ component of scattered field, but no 0

component.
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Square 5.5 Inch Plate; 200 THangles

CURRENT MOM3D COMPUTATION

(a) E-m,(Az,E = 0, 80

Figure 13-5 Current examples

(b)E-m,(Az, = o,2o

(a') E-phi, (Az, EI)

Current Computation: Plate currents arc shown in Figure 13-5 for the RMS (root mean

square) average for four excitation angles. In (a), the excitation is pcrl_ndicular to the plate

for E* polarization. We see that the current l_aks along the pair of edges parallel to the

incident field and tends toward zero for the edges l_rpcndicular to the incident field.

Currents in the center of the plate correspond to physical optics levels. We note that the

edge parallel currents show a 3 l_ak standing wave pattern corresponding to energy flashing

between the vertices (recall that the plate edge length was approximately 1.4 3, that would

create 3 standing wave peaks, one every half wavelength). The current along the edge

perpendicular to the incident E field, while tending to zero, show an oscillatory pattern.

Recall that triangle currents are the vector sum of the common (couple) cdgc currents.

Thus referring to Figure 13-2, we see that edge triangles alternate between having two or

three common edges. Those with three will have higher currents.

Figure 13-5 (b) shows the RMS induced currents for the surface traveling wave excitation

case, E e polarization at 20 ° elevation and 0 ° azimuth (looking perpendicular to edges). The
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results show low levels of currents near the front edge that build in intensity going toward

the rear edge. A three peak current standing wave pattern is evident, one every M2. This

is caused by the forward current phasor adding with the current reflected by the rear edge.

We also see two pronounced edge current peaks along each plate side, again showing a

standing wave pattern due to forward and reflected edge currents.

Figure 13-5 (c) shows the RMS currents for parallel edge on excitation. The incident field

is _ polarized. We see a dominant leading edge current at the plate front edge. The side

edges show the edge standing wave caused by the forward and reflected edge energy. The

currents in the plate center tend to be small. The rear edge current show a small peak,

probably due to diffraction energy flashing between the two back vertices.

Figure 13-5 (d) shows the RMS currents for the edge wave excitation at 45* azimuth for 9

polarization. We see two symmetric edge standing wave currents, again with a peak every

M2. These build in amplitude as the wave travels toward the aft vertices where they diffract

energy toward the front and rear corner vertices. The rear corner vertex current also peaks.

Currents in the center of the plate are small since this is an edge wave dominated excitation.

Downrange Images: Downrange images are shown in Figure 13-6. The images presented

here correspond to co-polarized backscatter energy (recall that the method described in

Section 5 also could compute a bistatic and/or a cross polarized image).

Case (a) is for illumination perpendicular to the plate such that the backscatter is the

specular flash, -4 dBsm. This orientation shows all energy originating from a single

downrange location.

Case Co) is for the traveling wave excitation, E* polarization at 20* elevation. We clearly

see the return as originating from the aft edge of the plate. This is due to the reflection of

the "forward" currents at the aft discontinuity. When these surface currents reflect and

travel toward the plate front edge they reduce in intensity as they radiate energy hack

toward the illuminating source that causes the image level to decay going toward the front
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Figure 134 Down range image of plate

edge of the plate.

Case (c) is for E" front edge parallel polarization for O"azimuth and elevation. The image

shows the scattered energy as originating from the front edge currents and corresponds to

the physical optics edge value of o_, - 12/ z - - 22 dBsm. We also see a return from the

aft end of the plate due to reflected edge wave energy.

Case (d) is for E* polarization at 45 ° azimuth that is the edge wave illumination case. We

see a peak return corresponding to edge wave reflected energy from the corner vertices and

a smaller return from the front vertex and the extreme aft vertex due to multiple diffraction.

Cross Range Images: Two dimensional cross range images are shown in Figure 13-7. The

5.5" plate dimension corresponds to _ 0.07 m for cross and downrange. These images are

co-polarized in the backscatter direction. The cross range direction, Figure 5-1, is in the cp
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direction that corresponds to a "rotation" about the Z axis. The images are shown as

contour plots using PLOT 88 FORTRAN graphics. The contour lines are spaced in 2 dB

increments. The cases presented here are the same illumination excitation as shown for the

downrange examples, Figure 13-6, and the induced current plots, Figure 13-5.

Case (a) is for E* illumination perpendicular to plate, (Az,EI) = 0", 90. The backscatter

return here is the "specular" flash where the plate currents have mostly the same phase and

when radiating, phasor add to form the "flash." The two dimensional image shows radiation

as originating at a constant downrange distance distnl_uted over the cross range dimension

of the plate. Recall that the specular flash had a value of -4 dBsm while the image shows

a maximum contour of between -14 and -12 dBsm. Two dimensional images thus show

distributed levels.

Case (b) is for the surface traveling wave illumination, E ° polarization at 20" elevation and

0 ° azimuth (perpendicular to edges). As expected, the image shows the major scattering as

originating from the surface traveling wave reflecting from the aft plate edge. Note that the

intensity then falls off as this reflected energy decays as it flows back toward the front edge

(Figure 13-6b). The intensity is slightly higher along the downrange edges.

Case (c) is for parallel edge illumination, E" polarization at O"azimuth and elevation. The

image clearly shows the leading edge as the dominant scattering source due to leading edge

induced currents. The two rear vertices are lesser scattering centers due to energy flowing

down each downrange edge. The source at the center of the rear edge is probably due to

multiple diffraction from the rear vertices.

Case (d) is the edge wave illumination example, E" polarization at 45" azimuth and 0"

elevation. The major scattering centers are the two vertices that reflect the edge waves.

The far rear vertex also is a major scattering center due to multiple vertex diffraction of the

edge traveling waves. The forward vertex is not a significant scattering center. Compare to

the downrange result, Figure 13-6d.
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Near Field Examples: Near field

computations for E t_ and E '_ are shown

in Figures 13-9 and 13-10. The plate

excitation was E ° perpendicular to the

plate, 90° elevation, 0° azimuth. The near

zone fields were computed over a 6 ).

square grid centered in the X-Z plane,

Figure 13-8, with computation points

iiiii_v

X

spaced every 0.1 k. Two vector fields were Figure 13-8 Near field computation grid

computed, E total and E scattered. For

each, the root mean square (RMS) scalar time average was computed along with the two

principal time values, one for cot = 0° (the REAL part), and the second for cot = -90 ° (the

IMAG part). The results displayed are for contours of intensity, not vector direction.

E Total Field: The total electric field, Figure 13-9, is the vector sum of the incident and

scattered field, ETM = E_" + E'=. The incident field for this case is a plane wave

propagating down the Z axis.

Case (a) is the RMS average. Beneath the plate the incident and scattered fields are out

of phase to form a shadow region. Above the plate is a standing wave pattern every _./2.

The peaks of the standing wave occur when the scattered and incident fields are in phase

while the nulls occur when the two fields are out of phase. The first peak occurs at a height

above the plate of _./4.

Case Co) is the IMAG value of the field. This is an instantaneous snap shot in time

corresponding to cot = - 90 °. The alternating intensity of the incident plane wave is clearly

seen. Above the plate the reflected (scattered) field causes an interference pattern (standing

wave) with the incident field. Beneath the plate the interference pattern forms the shadow

region.
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E Total Field - E inc+ E scat

(a) RMS Average

(b) Imao (.t--90 ° )

(c) Real (_t-O')

Case (C) is the REAL value of the field. This corresponds to a snap-shot in time of (ot -

0 _. The incident wave for this case has moved )./4, i.e., 90°, relative to case Co). Thus the

peaks of the incident field for (c) are located where the nulls in Co) are located.

E Scattered Field: The scattered field E" is shown in Figure 13-10. The equivalent far

field RCS pattern for this case is the bistatic result shown in Figure 13-4a. The backscatter

direction (reflected) is above the plato while the forward scattered field, which forms the

shadow region beneath the plate by phasor subtraction with the incident field, is beneath the

plate. The back and forward scattered fields arc symmetric above and below the plate.

Case (a) shows the RMS average intensity contours. The four lobes at 45 ° intervals are also

seen in the bistatic result, Figure 13-4a, at 45, 135, 22.5, and 315 degrees. The field is most

intense near the plato.
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Case CO) and (c) show the two instantaneous snapshots of the scattered field. The two are

separated by 90° phase, i.e., X/4, such that in Co) the peaks occur where the nulls occur in

(c). Far from the plate the field lines close back on themselves, L¢., the field is solenoidal.

Near the plate the field lines terminate on the induced charges.

Antenna Example: MOM3D also may

be used for antenna analysis. This

example shows the computed gain

pattern for a half wave dipole modeled

as a thin strip, Figure 13-11. The dipole

is centered along the Y axisin the X-Y

plane. The center port (couple) is the

feed location, 8. The computed gain

pattern, Figure 13-12, shows the typical

half wave dipole figure eight pattern

OIP.aBI lie • no I_. • SLO mSTm¢[ . ti'InO

\ .
• OF'mllll_L_h ............ I II

Figure 13-11 Half wave dipole strip antenna

geometry
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DIPOLE DRI = 0.0882

ANTENNA MOM,,XD COMPUTATION
Azimuth Cut: Rxed Elevation ,= 0.0 ; E-Phi Pd

0
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Figure 13-12 Half Wave dipole antenna gain pattern

with peak gain of 2.1 dbi. The computed input impedance was Z = 72 + j 6 ohms that

corresponds to a resonant half wave dipole operated slightly above r¢sonanc¢ since the

reactive component is inductive.
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APPENDIXA

NUMERICAL and ANALYTICAL MATRIX ELEMENT INTEGRATION

The approach and theory used to compute the Green's function integrals in a less

approximateor more exact manner than the centroid approach is presented. MOM3D uses

the centroid approximation for all triangle interactions greater than approximately ten

triangle spacings apart. For closer interaction distances, as specified by the user, one may

choose from three approaches for computing matrix elements: the centroid approximation;

or a combination analytical / numerical approach where the numerical integration may use

a single point (centroid) or may use three points.

Theory is presented for:. numerical quadrature formulas for surfaces; singularly removal; and

an analytical formula for the 1/R integration (point in space integrated over a triangular

area).

Overview: The initial

development of MOM3D used a

centroid approximation when

computing triangle to triangle

matrix element interactions,

Figure A-1. This results in a

considerable reduction in

complexity and in the computer

time required to fill the im-

pedance matrix. This technique

is reasonable when the mesh

triangles are greater than one

characteristic mesh length apart.

for touching co-planar triangles.

Distance

I g I = I I:tc * gl " gi {

Distance between source and field points wr,tten {n terms of the
centroid distance.

Figure A.1 Interaction distance R

Early work showed that the approach was still viable even

But, the centroid approximation becomes less reasonable

when two triangles become very close tO each other, such as when one triangle bends back
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on the second, as in modeling a small angle wedge, or when modeling two parallel surfaces

with separation less than a characteristic dimension L The fundamental difficulty is with

the 1/R integrand. When R is greater than L, the centroid approximation is reasonable, but

when the distance between triangles is less than L, then the centroid approximation over

estimates the 1/R interaction. Early studies showed that the centroid approximation was a

good approximation when triangle spacing was greater than one characteristic dimension L

apart, i.e., depends on mesh size and not on wavelength. Further, the centroid

approximation was adequate for two triangles with a common edge whenever the included

angle between was greater than 50 degrees, i.e., valid for planar surfaces and those with not

too rapidly varying curvature.

The basic current unknown is two adjacent

triangles with a common side, which forms

a couple. The matrix element interaction

is between pairs of couples, Figure A-2, and

involves interaction between four triangles.

The impedance matrix element between the

. ith and jth couples is a sum of four terms

accounting for the interaction between the

four triangles making up the two couples: Figure A-2 Matrix
triangle interactions

l_czu_

elements involve 4

= z.l, s. s,.
p-I q-I 4"

(A-l)
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This expression is exact in the sense that no approximations have been made other than the

fundamental choice of basis and weight functions. The terms O (1) and G (°) involve

integration of the Green's function between pairs of triangles,

. f f lr -rjl as,as,

and (A-2)

These are four fold integrals that express the electrical interaction of one surface patch with

another.

The centroid approximation for G o and G 1 is:

• -jf._

4'K I_'_1

(A.3)

(p:'.p;)

where r_g is the distance between the centroid of the ith and jth triangles. This approach is

computationally simple and fast, which is important when solving large geometries. This

approximation begins to fro1 when the triangle interaction distance becomes less than a

characteristic dimension such as for very close parallel surfaces or for knife edges where one

triangle folds back sharply on another.
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Numerical Triangle Integration Formulas: An integration scheme similar to one

dimensional Gaussian quadrature, but for triangular surfaces and tetrahedron volumes is

discussed by Hammer, Marlowe, and Stroud [All. They derive general surface and volume

numerical integration formulas of the form

f dV - asi( s) (A-4)
J-I

where the numbers ai are constants (weights) (j-1 to k), _j are points in the domain of f,

and R is the bounded closure of an open set in F__where n is the dimensionality of the

space. Their goal was to obtain numerical integration formulas for the n-simplex to hold

exactly for polynomial functions f of at most degree k.

Hammer et. ai. [A 1] give weight sets, ai, and function evaluation points, _i, for 1, 3, 4, and

7 function evaluation points over a triangle. The three point formula is said to hold exactly

for quadratic functions, the four point formula for cubic functions, and the seven point

formula for quintic functions.

It is interesting that reference [A1] specifies the centroid as the first affine invariant formula

for the triangle as the sole evaluation point with the weight equal to the area. This of

course is our centroid approach.

Application of reference [A1] results requires us to represent the function evaluation points

as vectors. Writing the vertices of a triangle as Vt, V2, V3 and the centroid as C ffi 1/3 _ Vi,

the function evaluation points rf (inside the triangle) are specified as

- r_ +(1 -r)_- wherei= 1,2,3. (A-S)
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wherer is a constantspecifiedby [A1] for thevariousordersof numericalintegration. The

function evaluation points inside the triangle can bc rewritten in terms of the triangle

ccntroid C as

where we recognize that tho vector ( C = Vi ) is from the i th triangle vertex to the ccntroid,

Figure A-3.

v2 v2 _,, T_nQle

.;,.._vnx
V C - V! : Vectorfromvertexto

V3 Vl 3 - Vt

Three Points, r ffi * 112 Three Points, r ffi - 112

V2 V2

Vl
Four Points Seven Points

VI

r =C - r ( C - Vi )

Figure A-3 Triangle function evaluation points

Three point surface integration is exact for quadratic functions (e.g., 2 terms of a Taylor

series expansion) for r = _ 1/2 with weights W = 1/3 A where A is the triangle area. For
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r ffi + 1/2, the evaluation points are the distinct trisection of the median chords and for r

= - 1/2, the evaluation points are the midpoints of the sides.

Four point surface integration is exact for a cubic polynomial for r = 2/5 with weights 25/48

for each of the three median chords and the centroid, r ffi 0, with weight (-9/16) A.

Seven point surface integration is exact for a quintic polynomial for function evaluations at

the centroid with weight (9/40) A and by two points on each median chord given by

r = ( 1 + _/15)/7

r ffi(1 -_/15)/7

with weight ( 155 - _/15 ) / 1200 A

with weight ( 155 + _/15 ) / 1200 A

or approximately

r ffi +0.6961405

r = -0.4104262

with weight 0.1259392 A

with weight 0.1323942/i

The astute reader will recognize that the sum of the weights for the 3, 4, or 7 point formulas

is just the area of the triangle A.

Figure A-3 shows the evaluation points within a triangle for the 3, 4, and 7 point integration

formulas.

Application to the double surface integral of MOM3D requires triangle to triangle

integration, i.e., a double sum. Thus the 3 point formulas will require 9 function evaluations,

the 4 point formula 16 evaluations and the 7 point formula 49 evaluations.

Analytical Point to Plane Line Integral Approach: Another method of computing surface

integrals is to use Stoke's theorem to reduce an area integration to a peripheral line

integral. If we let f represent the function to be integrated over a surface then:
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I - f dS - f dS - f  -d7 (A.7)

where the function f must be represented by the curl of the vector R (vector potential).

Stoke's theorem transforms the surface area integration to a closed perimeter line integral.

This technique has been discussed by Baker and Copson [A2] in terms of diffraction of light

by apertures in terms of the Maggi transformation, and by Gordon [A3] who applied the

technique to Physical Optics scattering by replacing a surface integration with the equivalent

peripheral line integral.

The resulting line integral can then be integrated analytically, as done by Gordon [A3] for

PO scattering by triangles or numerically, e.g., by Gaussian quadrature.

The key to applying this technique is to find the vector function II for a given integrand f.

This is not trivial. We would need a vector II corresponding to f = e _' / r. An alternative

approach is to remove the 1/r singularity and develop a vector IT corresponding to f = 1/r.

Singularity Removal and 1 R Formulas: The main difficulty in the centroid approximation

is the dominance of the 1/R singularity of the Green's function. Several authors have

subtracted out this singularity and split the Green's function integration into two terms, one

with only the 1/R singular part and the other with the singularity removed. The benefit of

this approach is that the term with the singularity removed is a very well behaved function

with a defined limiting value When R goes to zero. This well behaved function can be

numerically integrated while the singular part is dealt with separately. The following

approach follows that by Rao [A4] who developed an analytical formula for triangles for the

1/R singular integration.

The starting point is to subtract and add 1/R to the Green's function resulting in
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e-JkR • -jk_¢_ 1 1- + _ (A-S)
R R R

We will loosely call the first non singular term the phase. We note that this term has the

finite value of ojk when R = 0 as can readily be determined from its scrie._ expansion. Thus

the phase term is well behaved at R = 0 and can readily be integrated using any desired

numerical scheme.

The goal now is to integrate the singular 1/R term. Following [A4], a unique cylindrical

Field point

V

V

Figure A-4 Coordinate system for 1/R triangle integration

coordinate system (p,(p,w) is introduced, Figure A-4, where the polar axis w is through the

field point rf and is parallel to n, the unit normal to the plane of the triangle. The w = 0
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plane is coincident with the plane of the triangle. The field point r t is at w = - d ( d

assumed positive) along the w axis. The singular integral is written, using w-n=l, as

I

y.A d$ (A.9)= f I,_- vl

where p is the radial distance to r' in the triangle. This area integral is then converted to

line integral using Stoke's theorem,

f v×n._ as = f n._ (A.IO)

where the line integral is completely around the triangle. The vector II is chosen to have

only a _ component (in the plane of the triangle), thus

Vxl_.A - 1 0(PHi) = 1 (A.11)

p 0p _/d 2 + p2

Integrating, [A4] obtains
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a . 1I,6 : /P_÷d_ (A-J2)
p

where • is the unit vector in the ¢ direction (right hand rule applies). This function is

singular when p ffi 0 is included in the integration, which happens whenever the field point

rr is on or inside the parallel projection of the triangle parallel to n or w.

s_uJ_/_ Fm_dPo_ _ _ projq¢_ of tr_g_

,Singula_-_m F'mklPoint_ onv_mx MojectOnof_ngle

Figure A-$ Singularity removal depends on projection of field point rt

The singularity is excluded by not including it in the integration, Figure A-5,

I = I= - Ie (A-13)

where
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p

The singularity integration, where p = c = > 0, is

(A-14)

where _, is the amount of polar angle required to integrate around the singularity.

If the field point rf lies outside the projection of the triangle, no singularity exists and y =

0. If rf lies interior to the projection of the triangle, ¥ -- 2x; if r_ lies on one line of the

triangle, "r- z; and if rf lies on two lines of the projected triangle (i.e., a vertex), then _, =

the included angle of the two lines forming the vertex, Figure A-5.

We are now left with performing the integration of

(A-16)

where we note that 0,dl = p dO. This line integral could be integrated numerically, e.g.,

Gaussian quadrature. However, Rao [A4] has analytically performed the integration for

the case of a triangle. The integration is along each side of the triangle from q_i to q_i+l.

which are the polar angles corresponding to the end points (triangle vertices) of each line

segment. The interested reader is directed to [A4] for the details.
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Before presenting the result, we define the relevant parameters according to Figure A-4,

which differs slightly from that nscd in [A4]. Lot ai b¢ the out of plane vector from each

vertex to the field point r, Let pi be the in (triangle) plane distance from each vertex to the

w axis (p-0). l.,¢t Po be the in plane perpendicular distance of closest approach from the

w axis to the line segment i to i+ 1. Let ro_be the location on each line segment where p_

intercepts the line segment i to i+1 (Note that this point can b¢ outside the triangle on the

line extension). I._t al and _ be the positive scalar lengths of the corresponding vector. Lot

t, u_ be the unit vector along and in plane perpendicular to the ith edge. Referring to

Figure A-4, the following definitions should Ix: evident:

Poi = -_t'gi

%1 = _/P_+ d=

where i = I, 2, or 3

(A-17)
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The final analytical formula for the singular function I/R over a triangle is:

1 i dS 1 = 1

"7, ,., T" ----
(A-18)

where the singularity removal is

y= 0, 2_, _,Or (A-19)

This analytical result enables us to compute the singular portion of the integral.

When the field point rt is far from the source triangle, this formula should not be used since

in contains the difference of large quantifies. However, at large distances, we will simply use

the centroid approach.

Combined Numerical and Analytical Result: MOM3D has used these results by using the

1 and 3 point numerical integration formulas with the singular 1/R analytical formula to

compute G°_. Higher order numerical integration could have been implemented at the

expense of additional matrix fill time. It was decided to start simple and implement better

formulas only if required.
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The single point formula uses the triangle centroid as the numerical integration function

evaluation point, as specified by [A1], for the non singular "phase" term and the 1/R

analytical formula:

G_.I_ = e -Jf'_ - 1 + T/(_ c) + Yt(_) (A-20)

I_1 2

where r*_ = r_i- r_j.

The three point formula uses the 3 interior points spedfied by [A1] for integration. The

"phase" term is a double numerical integration while the singular term is a single numerical

integration that is averaged to enforce symmetry:

13 " 13 e(-lf.(q-q)) 1

* ] ] ] YJ(_,)
q'1 p'l

(A-21)
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